Department of Defense
Defense Modeling and Simulation Office

High Level Architecture
Run-Time Infrastructure

RTI 1.3-Next Generation
Programmer’s Guide

Version 3.2

Y V[\F

Sponsor: VIVINO =

Defense Modeling and Simulation Office
1901 N. Beauregard Street, Suite 504
Alexandria, VA 22311

(703) 998-0660

Science Applications International Corporation
Distributed Computing Technology Division
5400 Shawnee Road, Suite 110

Alexandria, VA 22312

(703) 354-2063

http://helpdesk.dctd.saic.com|

Virtual Technology Corporation
5400 Shawnee Road, Suite 203
Alexandria, VA 22312

(703) 658-7050
http://www.virtc.com|

Object Sciences Corporation
P.O. Box 7175

Fairfax Station, VA 22039
(703) 250-4338
http://www.objectsciences.com|

Dynamic Animations Systems
6035 Burke Center Parkway
Burke, VA 22015

(703) 503-0500
http://www.d-a-s.com|

http://www.dmso.mil/
http://helpdesk.dctd.saic.com/
http://www.virtc.com/
http://www.objectsciences.com/
http://www.d-a-s.com/

Errata — Programmer’s Guide (RTI 1.3NG-V3.2, 7 September 2000)

Revision 1 — 27 October 1999

Section 12.4.1, RTI Configuration Files — additional description and location information added
to the FED and RID file sub-sections.

Section 12.4.1, RTI Executables — information updated to include RtiExec, FedExec, and
Launcher table from Installation Guide.

Section 12.4.1, RTI Executables — information updated to include RtiExec and FedExec manual
operation commands.

Section 12.4.1, Downloading the RTI Software — information updated to reflect current Software
Distribution Center address.

Revision 2 — 10 December 1999

Section 12.3.5 Parameter Definition — RTI.rid parameter definitions updated to reflect current
implementation.

Section 12.4 Removed — Repeated material from Installation Guide.

Appendix B.3.3 discoverObjectinstance — description corrected to reflect proper discovery
criteria. (Third bullet deleted.)

Appendix C.1.1, AttributeHandleSet — exceptions corrected for AttributeHandleSet.
Revision 3 — 28 April 2000

Section 12.3.5 Parameter Definition — Change to actual RTI.rid file insertion to correctly reflect
the RTI-NG 1.3v3 .rid file.

Preface

Preface

The RTI Programmer’s Guide presents the Run-Time Infrastructure (RTI) — a fundamental
component of the High Level Architecture (HLA). Readers of the guide are presumed to have
modeling and simulation experience and prior exposure to the Department of Defense Modeling
and Simulation Master Plan. Experienced developers should find the RTI Programmer’s Guide,
along with the companion “Hands-On Practicum” course, sufficient to begin using the RTI.
Managers and System Architects porting old simulations to RTI 1.3-NG or planning new
simulations should find this presentation helpful for identifying and assessing important issues.
The guide examines the RTI application interface in considerable detail. The RTI software
implements the HLA Interface Specification. Releases of the RTI software respond to releases of
the HLA Interface Specification. Interesting releases are shown in Table P-1.

Interface Specification RTI Software Release Comments

Version 1.0

RTI F.0 (12/96)

No longer supported

Version 1.1 (02/97)

RTI 1.0 (05/97)

No longer supported

Version 1.2 (08/97)

None

Version 1.3 (02/98)

Version 1.3 (04/98)

RTI 1.3 (03/98)

RTI 1.3v2 (6/98)

RTI 1.3v3 (7/98)
RTI 1.3v4 (9/98)
RTI 1.3v5 (12/98)

RTI 1.3v6 (3/99) Partial release
Version 1.3 (04/98) > RTI1.3-NGv1 (9/99)
RTI 1.3-NGv2 (12/99) Verified Release

RTI 1.3-NGv3 (4/00)

Table P-1. Mapping of Releases to Specifications

An RTI 1.1 release was originally planned to correspond to Version 1.2 of the interface
specification, but the high frequency of specification and software releases and discrepancies in
the release numbering schemes proved to be complicated. The Architecture Management Group
(AMG) decided to postpone the 1.1 release of the RTI in order to implement the new 1.3
Interface Specification. A preliminary RTI 1.3 release (known as RTI 1.3 Beta) was distributed
01/98 to a small user community. The decision was made to synchronize RTI and interface
version numbering as of the 1.3 release of the HLA Interface Specification. There isno RTI 1.2
release. The RTI 1.3-Next Generation (NG) release represents a “from scratch” implementation
that builds upon the lessons learned from its predecessors. RTI 1.3-Next Generation version 1.1
is the first release on the RTI software to be fully verified against the 1.3 Interface Specification.
This RTI Programmer’s Guide covers only RTI 1.3-NG. The previous RTI 1.0 and RTI 1.3v6
Programmer’s Guides are available on the DMSO website. Complete sets of methods reference
pages for RTI 1.3-NG are provided in appendixes A through C. Service descriptions in the
reference pages clearly delineate RTI 1.3-NG availability, syntax, and semantics. An index of
these descriptions is provided at the end of this document. It references all service descriptions
found in the three appendices, in alphabetical order.

HLA RTI 1.3-Next Generation

TABLE OF CONTENTS

II"I'(I:I-/-\bIZ ... ||
F._I'NTR. ODUOCTION TO H A 1-1|
I.L..L FEDERATION RULEStiiiitiiiitiiiitiiiitetsetstesssstastsenssseastssnssssnssssnsnssnssstssnssnssstsensssenssssnssessesssnsssssrnsssenssnenssrsnsans l-dl
.2 INTERFACE SPECTFTCATIONooioir i sir s sisssss o sisssss s sisssississsssosisssssssisssss s sissssssisosssmrisosisoins =7
1.0 UBJECT IVIODEL TEMPLATE (UIVIT) . s 1-4
[.4 CONCEPTUAL IMIODEL OF THE IMISSION SPACE (CIVIIVIS) ... 1-0
1.0 DATA STANDARDIZATION (DS) ...ttt s s 1-0
L0 FURTHER READING. ..ttt ttuittiitiitittietsstseneestessessssssnsessesesssesesnssssenersresesesnssneesrenmetmtseseereertremeeneeimnerremen 1-7
Ié. L LIS 2 2 12 S 1 1S S é-ll
A Y/ N O] = O @ 1YL T N =1 1P 2-1
A = 1 = =
D3 FEDEXEC....
A 1= I P SRR
2.0 IVTAN A GEMEN T A RE A S . ..o e e e ettt ettt ettt et eaea e e e eaan e eaeaeaenenenanenanss
P5.1. Federauon vanagement
AR A W W U L= LR (0] L 1= U 1= L8 1] 11 | B S PESP S S
.0.9. | 0] L= 03 1Y = T =T L]] 1 |
AT S O 1) [5101 1 = L0 = 16 L) 111 | SRR
S ST M
P56, Data DIStriution Marmagenent

F. THE RULE OUF THIVIE . e a e aaas

5. L INTRODUCTION e e e e e e s e e s e e s s e e e e s s e e e s easr s aneees
5.2 [IME MANAGEMENT BASICS
5.5 REGULATING™ AND "CONSTRAINED

I 5013 =1 111 P PRSPPI
32 tookamead o
33, TSUEVENMT oo

FE 2 S N 0] 1] 1= 1 1] O

E..L LI T3 T 1
EA PRIMARY FUNCTIONS
B2 1. R 11aMDassauor .. CTeater BURT QUONMERECUUOT o
B2 2 RTTambassator - jOMFederatiONEXECUUONM(o
L0, g 1AITIOASSAUOT . LUICK{) v e
524 RTambassator TesSignFederationEXecution() .-
25, RTlambassador: JestroyFederationEXecution()
JRC N IO o [€] o I I = T2 1Y = I
.4 FEDERATE SYNCHRONIZATION
IR SIS AN Y2 =S L =3

HLA RTI 1.3-Next Generation

P. TTIVIE MIANAGEIVIEN T L e b-l|
P S 1 T T LT 1 T b-1
.2 TOGGLING "REGULATING™ AND "CONSTRAINED" STATUS...0-1

p.2.1. REGUIALION FPOTICY .. e s e s s e e s e e s e s e s s e a s easeaaranes o0-2
5. 2.2, COTISITGUTIEU PPOTICY cwovovvovememormsremarmrresmarmsresmaseanesmasmaressasmaressamaresnamaneasarmanmnsarmaresrarmarmrnarmonenainamnnaes 0-2

B3 TIME ADVANCE REQUES TS. et iriessrreseresseesssresssresseessseesssressessssessssresssnessstesseessseesssnessesseseses e snsesssesseessseess 0-2

B3 L. TITE-SIEPPCU FRUBTAIES oo 5-2

S = PP PP PP PP 0=
B33 OPHMISHT FEURTAES 62
(O L@] o 1] I N = VI =S b-o

D TIME-RELATED QUERIES oo oomsoseomeresmemeresmememsmemeesmemeresmeimeresmermeesmereeesseeeesmeeeesmeimeeseeeeseieererroes 5-9

E.b POLLING VS, ASYNCHRONOUSIU TICK() STRATEGIES ... o0-1U

[DECEARATION M ANAGE M EN T oo 7-1

L8 S 11 I 2] 303 1) PSSP 7-1

(.2 UBJECT VOCABULARY REVIEW ..o i sa s s s s s e e r e sa s s s s e sanses (-1

/.o OUBJECT HIERARCHIES -

74 PUBLISHING AND SUBSCRIBING OBJIETTS - oooimoimrosoeoesermomsoreomeereomaeseomaesmomaeimomaeieomaeiemeneieeeanens 7-3
T8 L. ODJECLPUDNCAUOIT o -2
T2 IMETaction PUDHCatON - 7-5
[.4.0. UDJECL SUDSUTTPUOUNT s e =9
T IMIETaCtiON SUDSCIPION s 7-0
745, _control signals -

(.0 OUBJECT FUBLICATION AND SUBSCRIPTIONuuiiiiiiiiiiiiiiiiiii i ssai s s s e ssa s saa e -1

(.0 THROTTLING PUBLICATIONSciiiiiitiiiisieiiiiiiii s s srssii s s s s snsasia s s s s sasasa s s s sasa s s s s s s ana bt sssasansbassssnenes /-0

(. FOODFIGHT OBJECT DECLARATION ...uuuututuuuiuiniuinininininiiissstsisisssssssssssssssssssssssssssssassassasasss s (-6

T FL.T.L, EXCEIPLITOM STHOBTIL T, o, 7-9
772, Dynamic ODject PUDICAtON and SUDSCIPUOM ..o 7-1T

I/.c‘: FPUBLISHING AND SUBSCRIBING INTERACTIONS. ... -11

B OBJEC T MAN A G EM EN T e 81
T REGISTERING, DISCOVERING, AND DELETING OBJECT INSTANCES oo oooomosoomoeomomeesmomeesmoeeeimenenons 81
.Z UPDATING AND REFLECTING UBJECT ATTRIBUTES ...t o-Z
.5 ENCODING AND UBJECT UPDATE .

.4 DECODING AND OUBJECT REFLECTION....ctutuiiiiiiiiriiiininisiiiiiiisssssisiisi s sssssiias s ssssssssssssssssssssssssssssssnsnsns 6-0
O EXCHANGING INTERACTIONS ...iiiiiiiiiiiiiiiiiiiiiiiiisinisisiss st ss s st s s s s st st sa st s e st st st s e s e s e sttt et s e st ra e e s s sananasanananes o-o
B© ADDITIONAL OBJECT CONTROL oo oooooomoerememsermemeermermemeseemaereemeesmoeeeseomeeseeeeeseeeaereeeeeseeeerene 8-7
~ B.0.L. ALUTIDUE MaNagement.. o -...0-Q|
6.2, ENaDIe/DISabIE ATTTDUTE MaNMAGEIMEIT . oo emeeeme s e meeeeemermsesomermeeseeesoeeeennmeeirones 8-9

P OWNERSHIP M ANA G E M EN T e 9-1]

B N RO DT IO s

LTI POV PUT
T2 Tt toDetete

P.é OWNERSHIP PULL .o e e s r s r e e reaees
F.z.l. ATTIDUTE OWNETSp ACqUISIton

P.d L A AY N =] | d 1
S T L 1[0 0] (0|10 = I = U] PSPPSR PRSP
3.2, NEOUUAEU PUSIT s,
03.3. COMpIexX EXChanges

P.L SUPPORTING FUNCTIONS ... s s e s s s s e sar e s s s e s ear et s st e s e s enananarnees
S L % |1 [1] | =1 0] PSSP PSSR PRSP

4a.L. L L L= (1=

HLA RTI 1.3-Next Generation

I.LU. DATADISTRIBUTTON MANAGEIMENT ..., J.U-J.|

10.1 LI LT @ 1 1 10-1
0.2 EXAMPLE ROUTING SPACEcctuiiiiiieeit ettt eeeti s e tetiasassisaaesasatssasasesasasesasaasssnsaaesnnserennsseessnsesssnnserennss 10-1
LU.Z. 1. A PTEVIOUS EXAMPIE REVISITEU.........ccciiii s s s a s aa e 1U-1
LU.Z.Z. AROULITIY OPACE ... s s st r s s e rareas 1U-Z
I.LU.d DEFINING ROUTING SPACES AND REGIONS. ... s as 10-5
[0.3. 1. ROUUNY SPACES v 10-3
0 S 2 EXEIM S TO=4
03 3 Caltutatiom Of EXEMS - IRV
T0-3Z. CTEAUVE DITETISIONS oo or oo oo e oo oo oo oo oo 10-5
U35, REUIONS alO ATTIDUIES s 00
107376, Outly Shaped Regions.... . 100
O3 7. TITESNMOIOS T0-7
O S 8 Defant ROt St o=
110.4 CREATING REGIONS . .. s a s aas 10-7
10.5 BINDING UBJECT ATTRIBUTES TO REGIONS.. .1U-0
DL AWTTOULE UPUALES dlTU IREUTUTTS L. i iiis s sass s snsasssasssnsassnassnassssssssnsassnassnassssssssnssssssssssnnnss 1U=
1075 2 AtTUtE STDSTHPHONS @M REGIOTS oo 16-9
1075.3, REQUESHY UPUaIES oo, 1079
T0U.5.2, ODJECL OWITETSIIP a0 REBUIOTIS corrrr s TO-11
1L O I | L=] B 10 1 10-11
I.LU.b BINDING INTERACTIONS TO REGIONS s nas 10-11
I.LJ.. IVIANAGEIVIENT UBJECU T IVIOUDEL ... e e 11-1
1.1 INTRODUCTION TO THE MIANAGEMENT UBJECT IVIODEL..... ..o s 11-1
1.2 INTERACTIONS L. r s e r e s e s s e s e ea s et e s e s e s ear e be s e s s e s e s e n s nnranean s 11-Z
T2 LILE= T [11-Z
Tarager.rederate ... T 4
Vramager - Federate AT UST =2
[VTaTTagET .- eURT e AU USL VTOU T Y AT U OTAE IT-2
Vranager - Federate. AtjUST SEtSETVICEREPOTTNY s =2
Viahager.Federate. AJJUSL. SETEXCEPUONLOYUINIJ...... ... s 11-5
VTaNager . FEOeTale. ACJUSL OB oo -3
DT =3
VtaTager. Federate. REpoTtATeT - T 11-3
[raTTageT . FedeT ate, REPOT LIREPOT UTTETaCHON P UDHCAHO M i T3
NVHaITageT . FedeTate. REPOT T REPOTHTMETACHONMSRECEIVET oo T
Vianager.Federate. RepPOrt. REPOITINTEIaClIONSIEIIT i 11-4
TaNager. FCORTAlE. REQUBSE s . 11-0|
Viahager.Federate. Request. ReqUEeSTINIENaClIONSRECEIVEUciiviiii i 11-6
VTanager. Fe0er ate. REQUEST. REQUESUMET ACUOTS OB TT-g|
VTaTTager . I cUeT ate. ReJUesSt. REJUESTO D eCUTITOT Tt O ...
Vianmager-Federate- Request REqUESTOD]ECISOWITEd
Viahager.Federdie. RequeSLREeqUESTUDJECISRETIECTIEU, 11-0
VTanager. Federate. REqUEST. REQUESTODJECUPUART I3

HLA RTI 1.3-Next Generation

Vianager.Fedaerate.request.xkequestrunlications

Vialiager.Federale. kequest. kequestReTIeClIOoNsKecelved

Ty er. I cUeT ate. ReJUEST. REUUESSUDSCT TP oS
VIager. Federate. Request REqUEStIPUatesSent.
TaITaUET FEURT B OBTVICE -
NVIager. FedeTate. SETVICE. CTaNgEAtIUEOTUET TYPE oo oo 9
VTanager.Federate. Service. CNangeATTIDUTE T TaNSPOTTATON TYPE «wovoeieroresrerseeeresereeresesesrmsrereresrmsereeiniees TT-9
VTAA0ET. FEUET AlE. SETVICE. CITANGE BT ACHOTOTURT TYPE s v vssrersr i IT9
[rETageT e SeTVItE CHage M aC o TS poTionT oy e TT=9]
NVHaITageT - FedeTate. SETVITE. DEtetEON eCHTTS AT oo T=10
Ty er. I eueT ate, SETVICE, DISaDICASY e TOTTOUS I VETY .o TT=10
VraTageT. Federate. SETVICE. DISate TIMECONSITAITIED —ro s sr s s s s sre s ersr i TT=10
Vianager.Fedaerate.Service.DISabIe TIMEREGUIATION. ..o s 11-1U
[VTaNager. FeUeTale. SETVICE. ENADTCASYTICITONOUSDIEIIVETY coovsrvrrrr s esre s srsrsrsssrerresrssissroiorreiirneons TI-10
Ty eT . T CUET alE. SETVICE. ENaDIE TIMECOTS AR s TT=10
Vramager-Federate. Service. EMapfe TIMEREgU Ao =10
Ty T . T CUET alE. SETVICE. I EUET Qe RESIOTECOMPIBIE TT10
VTanager. Federate. SETVICE. FEUBTAESAVECOMPIBIE oo oo eeesreseresresmeresreseresresosesresosesrereseereroresreirons TI-1T
VTAA0ET . FEUCT AlE. SETVICE. T TUSITIUBURREUUBST e s rrrrrsrrsrrrsrrssrrrrsrsrrrrrssrrrrsr s TI-IT
VT eT. I CUET ale, SETVICE, LOCA D C O ECHTISIANCE i TTTT
VT aTageT . FeaeTate. SETVICE. MOUT Y O0RATEAU oo v es s s vr e s s s srs s sr oo ir s =1t
VT e I CUCT alE, SETVICE. NERIEVEITIREUUES s TTTT
VraTageT. Federate. SETVICE. NEXtEVEMREqUESAVATa e v 1T
Vianager.Fedaerate.service.FuplisninteractionClass..
TAA0ET . FEUBT ALE. SETVICE. PUDTISITODETTCTATS s o rersrerrerrsssrerrerrsrrsrsrrrsrrrrsrrrrr s
Ty eT . T CUET alE. SETVICE. RESIONT BUETAQUONERECUUOT 17
VITageT. FedeTate. SETVITE. SUDSCTE METaC O aSS oo s oo =12
VTanager. Federate. SETVICe. SUDSCTIDEUD]ECTCTASSATITIOUTES. ..o oo s ereseesreseeseseseeresreseeresrereesesrereresreieees TI-17
VTAaQeT . FEUET AlE. SETVICE. SYNMCITOTIZAUONPOIMTUACTIEVET wovvrerrrrerrrrsrerrsrrsirersrrrrsr s, II-12
VTanNager. Federate. SETVICE. TIMEAUVANCEREUUBST - oovorrierrrrerreresrrsrereeresreressesresesresrereeresresesresreressesrerererrorrons TT-13
[VTaITa0eT .- CUET AlE. SETVICE. T IMEAUVANTCEREUESIAVAlTaDIE .. 1113
VTaTageT . I cUET ale. SETVICE. UTCONUTHONa AT D UEOWITETSPOTVESHIITE o T3
VraITageT. Federate. SETVITE. ONMpUTH ST ETaC O C aSS — v TT=13
VTanager. Federate. ServICe. UNPUDHSMODIECTCTASS oo se e s s s oo seeoes IT-13
VTaITageT .- CUETAlE. SETVICE. UTTSUDSCTIDEIIET QCHOMTCTASS . oo TI-13
Viahager.Fedaerate.ServiCce.UNSUDSCITDEUDJECILIASS ... 1I-15
I.Ll.d [= =30 15N 11-15

1Z.1 INTRODUCTION TO MIGRATING RTT 1.0V6 FEDERATES TO RTT L.o-NG ... 1Z-1
2.2 IMANAGEMENT OBJECT IVIODELeetivcvtiiiseeeseeessnnsseesssessnnsssssssenssnnsssesssesnssnssssesremnnsnnsseesermmsnnnnseeererennnn 12-1
771 GEMEral oS .. 7T
17727 Manager. Federate. Adjust ModfyATributeStare .. 121
[7.7.3. Nanager.Federate. AvjUST. SETEXCEPTIONLOGUING oo 2T
A T T =L T (=) 0 =0 =] =L (0 (=] 010 2 L] TP PRT I7-I
T2.2.5. VIaNayer.FeUeT ale. REPOT LIREPOTTODJECISUDSCTIPUOIT s I7-T
27276, IVianageT- Federate. REPOT . REPOTTSETVICEIMVOTAION oo 2T
A B 11 1= = (8] B =10 (=] - L 0] 0] [1 PSSP PSS T2-2
I.Lé.d RTTINITIALIZATION DATA (EXTRACTED FROM THE RTLRID FILE) ..., 12-Z
LZ.0.1. TNroduction to the KT L.o-NG KTT ITNITalZatlion Dall THE..............o, 1Z2-2
737, THE LOCAUON s 17-3

HLA RTI 1.3-Next Generation

1z 20 R o 1 = o @ 1= X 1Z-5
LZ.5.4. FIHE FalallIelel SCOPITIY ... e 1Z-5
T3S Parameter Defmton
I.LZ.4 NOTES ON PORTING FOODFIGHT FROM RTITL.oVO TORTTL.O-NG ...
7.2 1. VITgTatinyg FOOUr TGt T0T the Hangs-O1 PTaCicum 10 RIT Lo NG s

t2 42— Differences we TTotet wiTite Tummming the Tlew Foot F gt execation

T2 2 3 GBI MBI D

HLA RTI 1.3-Next Generation

Vi

TABLE OF FIGURES

-1 TAN =t

TGURE I=2. COMMON TECANICAL FRAMEWORK (oo, =2
;IUUHI: T=3 HTGH LEVEL ARCHITECTORE MAND AT E i T=2
TGURE I-4 HTACOMPONENT SUMMARY woorviiois s ii i, =3

IGURE 1-5. UBJECT MIODEL TEMPLATE
IGURE 1-0. UBJECT IVIODEL SUMMARY

IGURE L1-0. THE CUIVIIVIO FROCUESS ... s s e s r s n s e arnns

TGORE 2= RTTOVERVIEW i
IGURE Z-Z. KTT COMPONENTS AT-A-GLANCE ..o s s s s s s s s ra s nasas s s snrarannsnnnrnsnsnsnsnananens Z-2
IGURE Z-5. KTT COMPONENTS
=7 SIBILITIES Z-3
TGURE 2-5. FEDERATE — FEDERATIONINTERPLAY i pa
;IUUHI: Z2-0. TEDERECLITE CYCLE

IGURE Z-15. DATAUISTRIBUTION IVIANAGEMENT ...

IGURE 3-Z. SIX-AXIS DIAGRAM — LATE ARRINV AL . .. r s s s s s s s s s s rarnrnsnnnanrnannns 3-9|
FTGURE 3-3. LB 1S FOR CONSTRAINED FEDERATES o, 3-7
FTGURE o8, LA ARRIVING FEDERATIE 3-0

TGURE 3-5. PERFEDERATE QUEUES s, 39

[GURE 4-1. THE FEDERATION DEVELOPMENT AND EXECUTION PROCESS (FEDEP)MODEL ..o oo -1
FTGURE D-1. FEDERATION MIANAGEMENT LIFE CYCLE .o 51

[GURE 5-3. FEDERATION MIANAGEMENT SAVE........

FTGURE 5-4. FEDERATION MIANAGEMENT RESTORE
FTGURE O-L. TOUGGLING REGULATING AND CONSTRAINED STATS i O-1

TGURE 6-2. LOGICAL TTME ADVANCEMENT FOR A TTME-STEP FEDERATE v 6-3

TGURE 6-3. LOGICAL TTME ADVANCEMENT FOR AN EVENT-BASED FEDERATE oo o-4

TGURE 0-4. LOGICAL T TME ADVANCEMENT FOR AN OP TTMISTIC FEDERATE oo 6D

IGURE 7-1. CONTROL SIGNAL S HEM A . . s s s s s s s s s s st rarararararararssasnrnsnsssnsnsnsnsnsnsnsnrnsnsnenens -1

TGORE 7-Z. CLASS HIERARCHY — VENN DIAGRAM .. -3
FIGORE -3, UBJECT PUBLISHNG i T-2

TGURE 7-4. OBJECT PUBLICATION AND SUBSCRIPTION i 7-8

TGURE 7-5. DECLARING INTERACTIONS roovros i, 7-17

[GURE 8-1. UBJECT MANAGEMENT METHODOLOGY i B-1

TGURE 8-2. OBJECT MANAGEMENT UPDATES .o oiis s oiis s iii o oii o imii i niii i -3

TGURE 8-5. STOPE INTERACTIONS i, 8-10

TGURE 9-1. SHARED UPDATE RESPONSIBILTTY oo sss s sss oo oii s oiis s iii o siii o oiiin s iiinniiions 9-2
FTGURE 9-Z. OWNERSHIP PULL INTERACTTON DIAGRAM — ORPHANED AT TRIBUTE. .o 9-3

[GURE 9-3. OWNERSHIP PULL INTERACTION DIAGRAM — INTRUSIVE oo iiie i 94
FTGURE 9-Z. OWNERSHIP PUSH INTERACTTON DIAGRAM i 95
FTGURE 10-1. PUBLICATION AND SUBSCRIPTION INTERSECTIONS

TGURE 10-2. EXAMPLE ROUTING SPACE
IGURE 1U-5. NORMALIZATION OF A KANGE IN AN EXTENT
IGURE LU-3. TWO-LAYER FILTERING . .. s eas
IGURE LU-0. REGION IVIETHODS ... st s s s s e s s e s s e s r e ran e e nen

HLA RTI 1.3-Next Generation

vii

IGURE 1U-7. DDM ATTRIBUTES (FART 1 OF 5)

FTGURE 10-G. DDM ATIRIBUTES (PART Z OF 3)

FTGORE 10-9. DD AT IRIBUTES (PART S OF 3)

IGURE 1U-1U. INTERACTIONS AND DDUIVI

HLA RTI 1.3-Next Generation

viii

Introduction to HLA

1.Introduction to HLA

The DoD Modeling and Simulation Master Plan identifies six objectives for Modeling and
Simulation (M&S), as shown in Figure 1-1. Objective 1 of the plan, development of a common
technical framework for M&S, will be discussed in this chapter.

DoD M&S Master Plan

Objective 1 Objective 2 Objective 3 Objective 4 Objective 5 Objective 6
Develop a Provide timely Provide Provide Establish a Share the
common and authoritative authoritative M&S benefits of
technical authoritative representations representations infrastructure M&S
framework for representations of systems of human to meet
M&S of the natural behavior developer and
environment end-user needs
Sub-objective Sub-objective Sub-objective Sub-objective Sub-objective
1-1 2-1 4-1 5-1 6-1
High-level Terrain k Individuals Field systems Quantify
architecture impact
2-2 4-2 5-2
1-2 Oceans Groups and VV&A 6-2
Conceptual organizations Education
models of the ~ 2-3 5-3
mission space Atmosphere Repositories 6-3
Dual-use
1-3 2-4 5-4
Data Space Communications

standardization

5-5
Coordination
center

Signed out by USD (A&T) on 17 October 1995

Figure 1-1. DoD M&S Master Plan

Objective 1 of the Modeling and Simulation Master Plan has three sub-objectives (Figure 1-1,
DoD M&S Master Plan). These are (1) High-Level Architecture (HLA), (2) Conceptual Models

of the Mission Space (CMMS), and (3) Data Standardization (DS).
common technical framework components and candidate applications.

described in the sections that follow.

HLA RTI 1.3-Next Generation

Figure 1-2 outlines the
Each component is

Introduction to HLA

Common Technical Framework
e Components
- High Level Architecture (HLA)
- Conceptual Models of the Mission Space (CMMS)
- Data Standardization (DS)
» Candidate Applications
Analytical Simulations
- Tactical Level Training Simulations
- Training Range Interface
- Real Weapon Systems and C41 Interface
- Test and Evaluation Range Interface
- Engineering Level (R&D, T&E) Simulations
- Manufacturing Simulations

Figure 1-2. Common Technical Framework

The High-Level Architecture (HLA) mandate, shown in Figure 1-3, establishes a common high-
level simulation architecture to facilitate the interoperability of all types of models and
simulations among themselves and with C4l systems. The HLA is designed to promote
standardization in the M&S community and to facilitate the reuse of M&S components.

High Level Architecture (HLA)

“Under the authority of [DoD Directive 5000.59, “DoD Modeling
and Simulation (M&S) Management, ““January 4, 1994], and as
prescribed by [DoD 5000.59-P, ““DoD Modeling and Simulation
Master Plan (MSMP),”” October 1995] I designate the High Level
Architecture as the standard technical architecture for all DoD
simulations.

- Dr. Paul Kaminski — (9/10/1996)

* The Drive Toward Standardization
- The DoD now mandates adherence to the HLA.
- HLA replaces earlier approaches (e.g., DIS, ALSP)
- The HLA is in the process of IEEE standardization.

Figure 1-3. High Level Architecture Mandate

HLA RTI 1.3-Next Generation

1-2

The HLA is defined by three components:

Introduction to HLA

(1) Federation Rules, (2) the HLA Interface

Specification, and (3) the Object Model Template (OMT). Figure 1-4 summarizes the attributes
of the HLA components.

HLA Components

* Federation Rules
- Ensure proper interaction of simulations in a federation.
- Describe the simulation and federate responsibilities.

e Interface Specification
- Defines Run-Time Infrastructure (RTI) services.
- ldentifies “callback” functions each federate must provide.

* Object Model Template (OMT)
- Provides a common method for recording information.
- Establishes the format of key models:
1) Federation Object Model
2) Simulation Object Model
3) Management Object Model

Figure 1-4. HLA Component Summary

The Run-Time Infrastructure (RTI) software implements the interface specification and
represents one of the most tangible products of the HLA. It provides services in a manner that is
comparable to the way a distributed operating system provides services to applications.

Within the HLA, federations are comprised of federates that exchange information in the form of

objects and interactions — concepts that will be explained further in this guide.

1.1

Federation Rules

The Federation Rules describe the responsibilities of federates and their relationships with the

RTI. There are ten rules. Five relate to the federation and five to the federate.

Federation Rules:

1.

Federations shall have an HLA Federation Object Model (FOM), documented in

accordance with the HLA Object Model Template (OMT).

In a federation, all representation of objects in the FOM shall be in the federates, not in

the run-time infrastructure (RTI).

During a federation execution, all exchange of FOM data among federates shall occur via

the RTI.

During a federation execution, federates shall interact with the run-time infrastructure

(RTI) in accordance with the HLA interface specification.

HLA RTI 1.3-Next Generation

Introduction to HLA

5. During a federation execution, an attribute of an instance of an object shall be owned by
only one federate at any given time.

Federate Rules:

6. Federates shall have an HLA Simulation Object Model (SOM), documented in
accordance with the HLA Object Model Template (OMT).

7. Federates shall be able to update and/or reflect any attributes of objects in their SOM and
send and/or receive SOM object interactions externally, as specified in their SOM.

8. Federates shall be able to transfer and/or accept ownership of an attribute dynamically
during a federation execution, as specified in their SOM.

9. Federates shall be able to vary the conditions (e.g., thresholds) under which they provide
updates of attributes of objects, as specified in their SOM.

10. Federates shall be able to manage local time in a way that will allow them to coordinate
data exchange with other members of a federation.

1.2 Interface Specification

The interface specification identifies how federates will interact with the federation and,
ultimately, with one another. The specification is divided into six management areas, which are
explored at length in subsequent chapters.

1.3 Object Model Template (OMT)

All objects and interactions managed by a federate, and visible outside the federate, are described
according to the standard OMT. (See Figure 1-5.) The OMT provides a common method for
representing HLA Object Model information.

Object Model Template

* Object Model Template (OMT)
- Provides a common framework for HLA object model documentation.
- Fosters interoperability and reuse of simulations and simulation
components
* Required Information
- Object Class Structure Table
- Object Interaction Table
- Attribute/Parameter Table
- FOM/SOM Lexicon
* Optional Information (OMT Extensions)
- Component Structure Table
- Associations Table
- Object Model Metadata

Figure 1-5. Object Model Template

HLA RTI 1.3-Next Generation

Introduction to HLA

The Federation Object Model (FOM), Simulation Object Model (SOM) and Management Object
Model (MOM) are all defined using the OMT. Figure 1-6 summarizes these models.

Object Models

* Federation Object Model (FOM)
- One per federation
- Introduces all shared information (e.g., objects, interactions)
- Contemplates inter-federate issues (e.g., data encoding schemes)

e Simulation Object Model (SOM)
- One per federate.
- Describes salient characteristics of a federate
- Presents objects and interactions which can be used externally
- Focuses on the federate’s internal operation

* Management Object Model (MOM)
- Universal definition.
- Identifies objects and interactions used to manage a federation.

Figure 1-6. Object Model Summary

The HLA separates data and architecture. It prescribes that OMT objects and interactions
defined according to the OMT can be constructed and exchanged with no adjustments to HLA-
derived software.

1.4 Conceptual Model of the Mission Space (CMMS)

A Conceptual Model of the Mission Space (CMMYS) is a first abstraction of the real world, which
serves as a common framework for knowledge acquisition with validated, relevant actions and
interactions organized by specific task and entity/organization. It is a simulation-independent
hierarchical description of actions and interactions among the various entities associated with a
particular mission area. See Figure 1-7.

Conceptual Model of the Mission Space (CMMS)

» Establishes a common framework for knowledge
acquisition and a standard format for expression.

» Organizes validated, relevant actions and interactions
organized by specific task and entity/organization.

* Provides simulation developers a common representation of
the real world.

» Presents actions and interactions among the various entities
associated with a particular mission area.

Figure 1-7. Conceptual Model of the Mission Space

HLA RTI 1.3-Next Generation

Introduction to HLA

Thus, conceptual models of the mission space provide simulation developers with a common
baseline for constructing consistent and authoritative M&S representations. The primary
purpose of CMMS is to facilitate interoperability and reuse of simulation components,
particularly among DoD simulation developments, by sharing common, authoritative
information between DoD simulations. The CMMS will provide a meta-model of fundamental
knowledge about military operations. The CMMS System will capture and store this knowledge,
and make it easily accessible to simulation developers and users. Figure 1-8 depicts the CMMS
process.

The CMMS Process
Data Interchange Format

DIF DIF
" 7

INTEGRATION Information

Verified_, USER INTERFACE Verification/Integration
authoritative m— == g
sources of
knowledge KNOWLEDGEINTEGRATIO

»——" ToOoLS

IMPORT
TOOLS

CMMS
Data Base

EXPORT
TOOLS/ 4

USER INTERFXCE

Simulation Developers,
Warfighters (Doctrine
Developers, Trainers, ...)

4
y PRIMARY USER
INTERFACES

Validation by
Authoritative Source

CMMS Data Base is part of the MSRR (Modeling
and Simulation Resource Repository), used in
designing FOMs (Federation Object Models)

Figure 1-8. The CMMS Process

The mission space structure, tools, and resources will provide both an overarching framework
and access to the necessary data and details to permit development of consistent, interoperable,
and authoritative representations of the environment, systems, and human behavior in DoD
simulation system.

1.5 Data Standardization (DS)

The data standardization program seeks to facilitate reuse, interoperability, and data sharing
among models, simulations, and C41 systems by establishing policies, procedures, and
methodologies for data requirements, standards, sources, security, and verification, validation,
and certification.

The primary products of the data standardization program are: (1) Common Semantics and
Syntax (CSS), which define common lexicons, dictionaries, taxonomies, and tools for data

HLA RTI 1.3-Next Generation

1-6

Introduction to HLA

elements, and (2) Data Interchange Formats (DIF), the physical structures (BNF, SQL) used by
programmers to actually interchange data.

Other supporting data standardization products are: (1) Authoritative Data Sources (ADS), the
primary means for identifying data for reuse, (2) Data Quality (DQ) practices, a body of

VV&AI/C guidelines, and (3) Data Security (DS) practices, the policies pertaining to data
protection and release. See Figure 1-9.

Data Standardization Products
Program Activities
css | | abs | | bF | | bQ | | bs |
Common Authoritative Data Data Data
Semantics Data Sources Interchange Quality Security
and Syntax Format
[3
Bl Sose @
y "Wﬁ@r—
(.ﬁ[:-—
Lexicons, Means for Physical Body of Policies for
dictionaries, identifying structures VV&A/C data
etc... data for reuse (BNF, SQL) guidelines protection
used by and release
programmers

Figure 1-9. Data Standardization Products
1.6 Further Reading

Additional information may be obtained from the HLA Technical Library. Figure 1-10 provides
the DMSO home page location and e-mail address for connections via the Internet.

HLA Technical Library

* The DMSO home page — http://www.dmso.mil/
- HLA Baseline Definition (Rules, Interface Specification, OMT)

- OMT Supporting Documents, Extensions and Test Procedures
- HLA Glossary

- HLA Compliance Checklist

- HLA Federation Development Process Model

- HLA Security Architecture

- And so much more ...

e E-mail Connections

- Questions for DMSO: hla@msis.dmso.mil
- Reflectors: TBD

Figure 1-10. HLA Technical Library

HLA RTI 1.3-Next Generation

1-7

RTI1 Synopsis

2.RTI Synopsis

This chapter introduces general characteristics of RTI 1.3-NG. It identifies major RTI
components, examines the interplay between federates and the federation, and postulates some
ground rules for using RTI software. Figure 2-1 summarizes the RTI definition described in the
rest of this chapter.

Run-Time Infrastructure (RTI) Overview

What is the RTI?

Software that provides common services to simulation systems.

Implementation of the HLA Interface Specification.

An architectural foundation encouraging portability and interoperability.
RTI Services at a Glance

Separates simulation and communication.

Improves on older standards (e.g., DIS, ALSP).

Facilitates construction and destruction of federations.

Supports object declaration and management between federates.

Assists with federation time management.

Provides efficient communications to logical groups of federates.

Figure 2-1. RTI Overview

RTI 1.3-NG implements Version 1.3 (Draft 10, 2 April 1998) of the HLA Interface Specification.
The RTI 1.3-NG software having been rewritten “from the ground up”, may vary slightly from
its predecessors. However, every effort has been made to ensure that RTI 1.3-NG maintains a
“compile time” compatibility with the previous RTI 1.3v6 release.

RTI software is currently comprised of the RTI Executive process (RtiExec), the Federation
Executive process (FedExec) and the libRTI library. As illustrated in Figure 2-2, each
executable containing federates incorporates libRTI. Federates may exist as independent
processes or be grouped into one or more processes. A federate may simultaneously participate
in more than one federation.

2.1 Major Components

RTI software can be executed on a standalone workstation or executed over an arbitrarily
complex network. The RtiExec process manages the creation and destruction of federation
executions. Each executing federation is characterized by a single, global FedExec.

HLA RTI 1.3-Next Generation

2-1

RTI1 Synopsis

RTI Components At-a-Glance

Federate(s) ¢ ¢ o

| Inter-Process Communications

Figure 2-2. RTI Components At-a-Glance

The FedExec manages federates joining and resigning the federation. The libRTI library extends
RTI services to federate developers. Services are accomplished through encapsulated
communications between libRTI, RtiExec, and the appropriate FedExec. Figure 2-3 summarizes
the activities supported by the components of the RTI.

RTI Components

* RtiExec- The RTI Executive

Manages multiple federation executions within a
network. different names).

* FedExec — The Federation Executive

Manages multiple federates within the federation
execution.

* libRTI- The RTI Library

Provides HLA services to federates.

Figure 2-3. RTI Components
2.2 RtiExec

The RtiExec is a globally known process. Each application communicates with RtiExec to
initialize RTI components. The RtiExec’s primary purpose is to manage the creation and

HLA RTI 1.3-Next Generation

2-2

RTI1 Synopsis

destruction of FedExecs. An RtiExec directs joining federates to the appropriate federation
execution. RtiExec ensures that each FedExec has a unique name.

2.3 FedExec

Each FedExec manages a federation. It allows federates to join and to resign, and facilitates data
exchange between participating federates. A FedExec process is created by the first federate to
successfully invoke the “createFederationExecution” service for a given federation execution
name. Each federate joining the federation is assigned a federation wide unique handle.

24 |libRTI

The C++ library, libRTI, provides the RTI services specified in the HLA Interface Specification
to federate developers. The class diagrams in Figure 2-4 illustrates RTI and federates code
responsibilities. Federates use libRTI (which communicates with the RtiExec, a FedExec, and
other federates) to invoke HLA services.

RTI and Federate “Ambassadors”

FederateAmbassador “Various RTI Objects" Q

libRTI

RTlambassador

-

"Ambassador Implementation”

W

Federate Code "Various Federate Objects”

Figure 2-4. RTI and Federate Code Responsibilities

The HLA Interface Specification identifies the services provided by libRTI to each federates and
the obligation each federate bears to the federation. Within libRT]I, the class RTlambassador
bundles the services provided by the RTI* All requests made by a federate on the RTI take the
form of an RTlambassador method call. The abstract class FederateAmbassador identifies the
callback functions each federate is obliged to provide.

While both RTlambassador and FederateAmbassador ambassador classes are a part of libRTI, it
is very important to understand that FederateAmbassador is abstract. The federate must

! Most RTI classes (e.g., RTlambassador, FederateAmbassador) are declared within the class RTI for namespace protection. The
prefix “RTI : : ” will be required to access these classes (e.g., RTI::RTlambassador).

HLA RTI 1.3-Next Generation

RTI1 Synopsis

implement the functionality declared in FederateAmbassador. An instance of this federate-
supplied class is required to join a Federation.

The federation (via libRTI) responds asynchronously to many federate requests.
FederateAmbassador “callback” functions provide a mechanism for the federation to
communicate back to the federate.

The header file “RTLhh” that accompanies |ibRTI includes declarations for class
RTlambassador, the abstract class FederateAmbassador, and a variety of supporting declarations
and definitions. The RTlambassador is implemented in libRTI and must be incorporated into
each federate executable. The RTI and Federate ambassadors are examined in detail in
subsequent chapters.

2.5 Management Areas

Figure 2-5 presents a high level illustration of the interplay between a federate and a federation.

Interplay At-a-Glance

create federation

join

publish object attributes & interactions

create & register objects

subscribe & discaver Y

send, update & reflect

< exchange attribute ownership
 delete/remove object |
:l begin shutdown

resign

remove federate |:'

Figure 2-5. Federate — Federation Interplay

The HLA Interface Specification partitions the exchanges that take place between federate and
federation into six management areas of the FedExec life cycle, as shown in Figure 2-6. The
remaining figures offer a light overview of the management areas. Details will be explored in
subsequent chapters. Figure 2-7 summarizes the objectives of each of the management areas.

HLA RTI 1.3-Next Generation

2-4

RTI1 Synopsis

Each of the management areas is described in one of the chapters that follow. Figures 2-8
through 2-13 present summary graphics for each management area to introduce the purpose and
scope of each area and to provide a synopsis of the actions allocated to each management area.
The applicable chapters that relate to each of the management areas are also provided in the
following sections.

FedExec Lifecycle

| Federation Mgmt |

| Declaration Mgmt |

| Object Mgmt |

| Ownership Mgmt |

| Time Mgmt |

| Data Distribution Mgmt |

Figure 2-6. FedExec Life Cycle

Management Areas Partitioned

Management Area Activities Described

Federation Mgmt Control an exercise

Declaration Mgmt Define data publication and
subscription

Object Mgmt Exchange object and interaction
data

Ownership Mgmt Transfer attribute ownership

Time Mgmt Control message ordering

Data Distribution Mgmt Efficiently route data between

producers and consumers

RTI Support Services Assist service operations

Figure 2-7. Management Areas Partitioned

HLA RTI 1.3-Next Generation

2-5

RTI1 Synopsis

2.5.1. Federation Management

Federation management includes such tasks as creating federations, joining federates to
federations, observing federation-wide synchronization points, effecting federation-wide saves
and restores, resigning federates from federations, and destroying federations. Figure 2-8
summarizes the Federation Management profile. Chapter 5, Federation Management, describes
these features.

Federation Management

» Activity Coordination
- Manages federation execution
- Initializes name space, transportation, ordering defaults, routing spaces, etc.

e Action Synopsis

- Creation “Let’s play a game.”

- Joining “l want to play.”

- Saves “Let’s save our state.”

- Sync “Hold it —let’s sync up.”

- Resigning “Now I’'m leaving the game.”
- Deleting “Let’s end the game.”

Figure 2-8. Federation Management
2.5.2. Declaration Management

Declaration management includes publication, subscription, and supporting control functions.
Federates that produce object class attributes or interactions must declare exactly what they are
able to publish (i.e., generate). Figure 2-9 shows the main coordination tasks and synopsizes the
actions accomplished by declaration management. Chapter 7, Declaration Management,
discusses these tasks in detail.

Declaration Management

e Data Exchange Coordination
- Specify data types a federate will send and receive.

- Control what data is required based on external interest.

e Action Synopsis

- Publication “Here's the information I'll be presenting.”
- Subscription "Here's what | want to know about.”
- Control “Hey, someone actually wants to know about that.”

Figure 2-9. Declaration Management

HLA RTI 1.3-Next Generation

2-6

RTI1 Synopsis

2.5.3. Object Management

Object management includes instance registration and instance updates on the object producer
side and instance discovery and reflection on the object consumer side. Object management also
includes methods associated with sending and receiving interactions, controlling instance
updates based on consumer demand, and other miscellaneous support functions. Figure 2-10
presents the object discovery principles and a synopsis of the actions effected by object
management. These actions are discussed in detail in Chapter 8, Object Management.

Object Management

e Object Discovery Principles
- Creates, modifies, and deletes object and interaction.
- Manages object identification.
- Facilitates object registration and distribution.
- Coordinates attribute updates among federates.
- Accommodates various transportation and time management schemes.

e Action Synopsis

- Register Object “I've got a new tank.”

- Update Attribute “One of my planes just changed direction.”
- Send Interaction “Flight 501 requesting permission to land.”
- Delete Object “A truck just exited view.”

- Change Transport “The fuel level must be sent reliable.”
- Chanae Order Tvpe “Aircraft position must be sent in order.”

Figure 2-10. Object Management
2.5.4. Ownership Management

The RTI allows federates to distribute the responsibility for updating and deleting object
instances with a few restrictions. It is possible for an object instance to be wholly owned by a
single federate. In such cases, the owning federate has responsibility for updating all attributes
associated with the object and for deleting the object instance. It is possible for two or more
federates to share update responsibility for a single object instance. When update responsibility
for an object instance is shared, each 0[5 the participating federates has responsibility for a
mutually exclusive set of object attributes.? Only one federate can have update responsibility for
an individual attribute of an object instance at any given time. In addition, only one federate has
the privilege to delete an object instance at any given time. These object management tasks are
summarized in Figure 2-11, and discussed in detail in Chapter 9, Ownership Management.

2 For a given object instance, some attributes may be unowned - i.e., no federate has update responsibility.

HLA RTI 1.3-Next Generation
2-7

* Shared
- Supports transfer of ownership for individual object attributes.
- Offers both “push” and “pull” based transactions.

* Action
- Divest “I cannot simulate this plane’s radar signal anymore.”
- Acquire “Thanks, I'll accept responsibility for this tank’s position.”
- Query “Who is managing this truck’s fuel supply?”

Ownership Management

Figure 2-11. Ownership Management

2.5.5. Time Management

RTI1 Synopsis

The focus of time management is on the mechanics required to implement time management
policies and negotiate time advances. Chapter 6, Time Management, discusses these tasks in
detail. Figure 2-12 displays a synopsis of the time management actions.

Time Management

Coordinate federate logical time advancement

Establish or associate events with federate time

Regulate interactions, attribute updates, object reflections or object deletion by
federate time scheme

Support causal behavior within a federation

Support interaction among federates using different timing schemes

Action Synopsis

Set Policy “Send me events in increasing logical time sequence.”
Request Time “What time is it?”

Bracketing “I’ll provide you 20 minutes prior notice for all changes.”
Advance Time “Move me to my current time plus 5.0 seconds.”

Next Event “Move me up to my next TSO event and deliver it.”
Flush Queue “Move me up to the LBTS or this limit and deliver my

queued events.”

HLA RTI 1.3-Next Generation

Figure 2-12. Time Management

2-8

RTI1 Synopsis

2.5.6. Data Distribution Management

Data distribution management (DDM) provides a flexible and extensive mechanism for further
isolating publication and subscription interests — effectively extending the sophistication of the
RTI's routing capabilities. Figure 2-13 presents a synopsis of the DDM actions.

Data Distribution Management

e Information Routing

- Supports efficient routing of data.

- Specifies distribution.

- Acknowledges “routing” conditions.
e Action Synopsis

- Create region

- Modify region

- Delete region

- Register entity w/region

- Control updates

Figure 2-13. Data Distribution Management

HLA RTI 1.3-Next Generation

2-9

The Role of Time

3.The Role of Time

3.1 Introduction

This chapterd'ntroduces time management from a philosophical perspective and emphasizes RTI
terminology.* The RTI software supports a variety of time management policies. Time
management services are optional. However, it is important to understand the time management
models available in the RTI and the implication of exchanging events between federates with
different time management policies. Chapter 6, Time Management, introduces specific RTI
methods for setting time management policy and negotiating time advances.

3.2 Time Management Basics

The HLA accommodates a variety of time management policies. The RTI provides an optional
time management service to coordinate the exchange of events between federates. Events can be
associated with a point in time and the RTI can assist in ensuring causal behavior. It is also
possible for one or more federates in a federation to fully ignore time. By default, the RTI does
not attempt to coordinate time between federates. In addition, the HLA not only supports a
variety of time management policies, but also facilitates interoperability between federates with
different policies. Even if the optional time management services are ignored, it pays to
understand available time management schemes.

In a federation, time always moves forward. However, the perception of the current time may
differ among participating federates. Time management is concerned with the mechanisms for
controlling the advancement of each federate along the federation time axis. In general, time
advances must be coordinated with object management services so that information is delivered
to each federate in a causally correct and ordered fashion.

In some situations, it is appropriate to constrain the progress of one federate based on the
progress of another. In fact, any federate may be designated a regulating federate. Regulating
federates regulate the progress in time of federates that are designated as constrained. In
general, a federate may be "regulating,” "constrained,"” "regulating and constrained,” or "neither
regulating nor constrained.” By default, federates are neither regulating nor constrained. The
RTI recognizes every federate as adopting one of these four approaches to time management. A
federation may be comprised of federates with any combination of time management models.
That is, a federation may consist of several federates that are regulating, several federates that are
constrained, several federates that are regulating and constrained, or several federates that are not
using the RTI time management services.

A federate that becomes "time regulating™ may associate some of its activities (e.g., updating
instance attribute values and sending interactions) with points on the federation time axis. Such
events are said to have a "time-stamp.” A federate that is interested in discovering events in a
federation-wide, time-stamp order is said to be "time constrained.” The time management

3 portions of this chapter are lifted directly or paraphrased from the HLA 1.3 Interface Specification.

HLA RTI 1.3-Next Generation

3-1

The Role of Time

services coordinate event exchange among time regulating and time-constrained federates.fl Such
coordination levies certain rules on participants.

Again, federates are neither time regulating nor time constrained by default. The activities of
these federates are not coordinated (in time) with other federates by the RTI. Such federates
need not make use of any of the time management services. However, these federates may
participate in a federation where time-stamped events are exchanged. It is important to
understand how time-stamped events are perceived by federates that are not constrained.
Conversely, it is important to understand how events generated by a non-regulating federate are
perceived by a constrained federate.

3.3 "Regulating" and "Constrained"

Figure 3-1, known as the "two-axis diagram,” introduces the definitions of "regulating,”
"lookahead,” "TSO event," "constrained," and "lower bound time stamp (LBTS)." Subsequent
diagrams examine complex combinations of federates with various time management policies
and explore these definitions in some depth.

Lookahead
Regulating Federate —> &

——t—F+—0—XK X XX
)

Time-Stamp-Ordered (TSO) Events

Constrained Federate

Lower Bound Time Stamp (LBTS) constraint

Figure 3-1. Two-Axis Diagram

* Regulating federates generally produce time-stamped events, which their Local RTI Component (LRC) communicates to
interested recipients. The LRC of each interested recipient orders all arriving time-stamped events by the time at which the events
are said to occur.

HLA RTI 1.3-Next Generation

3-2

The Role of Time

3.3.1. Regulating

A federate that declares itself to be "regulating” is capable of generating time-stamp-ordered
(TSO) events. TSO events are said to occur at a specific point in time. Federates that are not
regulating can generate events, but there is no time associated with these events.* A regulating
federate coordinates time advances with the local RTI component (LRC). The regulating
federate perceives the current time to be "teurent,” Federates can dynamically alter their status
becoming regulating or non-regulating dynamically (i.e., "on-the-fly").

3.3.2. Lookahead

Each regulating federate establishes a "lookahead" value. The regulating federate promises that
any TSO events it generates will occur equal to and no earlier than "tcyrrent + tiookahead.” The
lookahead value, tiookanead, represents a contract between the regulating federate and the
federation. It establishes the earliest possible TSO event the federate can generate relative to the
current time, teyrrent.

Regulating federates must specify a lookahead value at the time they become regulating.
Facilities exist to alter the lookahead value dynamically. It is possible to specify a lookahead
value of zero. However, zero lookahead places extra constraints on a federate. When operating
with a zero lookahead, the reference manual pages, for time management, should be read
carefully to identify any special conditions and restrictions.

3.3.3. TSO Event

A TSO event is simpﬂy an event with an associated time-stamp. Only regulating federates can
generate TSO events.® A regulating federate can generate multiple TSO and/or non-TSO events,
but all TSO events must occur at a time "teyrent + tiookanead' OF greater. Regulating federates need
not generate TSO events in time-stamp order. That is, a regulating federate might generate an
event at "teyrrent + tiookanead + 5" followed by another event at "teurrent + tiookanead + 2." It is the job of
a constrained federate’s LRC to order TSO events.

3.3.4. Constrained

A federate that declares itself to be "constrained" is capable of receiving TSO events. Egederates
that are not constrained still learn of TSO events, but absent the time-stamp information.

3.3.5. Lower bound time stamp (LBTS)

Constrained federates have an associated LBTS.EI The LBTS specifies the time of the earliest
possible time-stamp-ordered event the federate can receive. The LBTS is determined by looking

® Such events are referred to as "Receive-Ordered" v. "Time-Stamp-Ordered" and will be discussed subsequently.
® There are additional requirements on TSO events that are discussed subsequently.
7 Again, events with no time-stamp are termed "Receive-Ordered" and are discussed subsequently.

HLA RTI 1.3-Next Generation

The Role of Time

at the earliest possible message that might be generated by all other regulating federates. It
changes as the regulating federates advance in time. A constrained federate cannot advance
beyond its LBTS (i.e., this is the constraint from whence the name constrained), because the RTI
can only guarantee there will be no more packets received prior to the LBTS.

3.4 Advancing Time

This section introduces a series of diagrams sometimes referred to as the six-axis diagrams.
Each axis represents a federate in a federation. Each federate is using it’s own time management

policy.

In Figure 3-2, five of six federates have joined an established federation. One of the federate's
has not shown up yet — it is said to be late arriving. The small, solid circles represent the
federation time as perceived by each federate. It is extremely important to understand that there
is no universal "federation time" (at any given point each federate could have different “current
times.” Each federate is free to increment time independently. Some federates will apply the
same time increment repeatedly. Other federates may jump through time based on the next
available TSO event or some other criteria.

8 All federates, constrained or not, have an LBTS value. LBTS is really only meaningful to constrained federates or
unconstrained federates planning to become constrained.

HLA RTI 1.3-Next Generation

3-4

The Role of Time

Federate #1
regulating

< | | | | | | | | | |
N [[[+ [[[I [[[

Federate #2
unknown

v

LATEARRMNG- NOT YETJONED

Federate #3
regulating and constrained

[S M AN o B R B B B B S

Federate #4
constrained .

| | | | | [| | | | | |
[| [| + | 2 [[[[[[[

Federate #5 -
regulating and constrained —

| | | | | | | | | | |
I I [+ | I I I | I I [

Federate #6
default

A 4

\ 4

\/

0 5 10 15 20 25 30 35 40 45 50 55

Figure 3-2. Six-axis Diagram — Late Arrival

The thick, shaded regions in the diagram represent the lookahead values specified by regulating
federates. Federate #1’s lookahead is twice its time step interval. Federate #3 and #5 have
lookahead values that appear to be one time interval ahead. The lookahead values need not be
related to a federate's time interval (as we will see when Federate #2 arrives).

Clearly, each federate in this federation has a unique perspective on the current time.

Federate 1 t = 17 seconds
Federate 2 not applicable
Federate 3 t = 16 seconds
Federate 4 t = 18 seconds
Federate 5 t = 16 seconds
Federate 6 t = 0 seconds

It's valuable to pose the question, "Is this combination of perceived times legitimate?" In
general, unconstrained federates are free to progress through time. An unconstrained federate

HLA RTI 1.3-Next Generation

3-5

The Role of Time

has no requirement to request time advance grants through the RTI. For example, Federate #1
and Federate #6 can advance in time as fast as they want (or at least as fast as their simulation
model can run). Should these unconstrained federates request permission to advance in time,
their LRC realizes that they are unconstrained and grants permission to advance as a matter of
course.

3.4.1. LBTS Constraint

Constrained federates cannot proceed beyond their current LBTS. The LBTS for a given
federate is determined by calculating the earliest possible message a federate might receive from
other regulating federates. Enforcing the LBTS constraint requires coordination between
federate LRCs. As regulating federates advance, the LBTS of constrained federates increases.
Figure 3-3 illustrates the LBTS for constrained federates.

The vertical dashed lines in Figure 3-3 represent the earliest possible TSO message that can be
produced by each of the regulating federates — given their current time and their promised
lookahead values. Below each constrained federate, a horizontal line is extended from “t = 0” to
the federate’s LBTS. In Figure 3-3, it is clear that the current time as perceived by each of the
constrained federates is within their respective LBTS windows. Therefore, the “combination of
perceived times” for each federate shown is legitimate!

Constrained federates are free to advance in time to their LBTS, but no further. In Figure 3-3,
Federate #3 could increment to the next “tick mark” since the resulting time would be within its
LBTS. However, Federate #4 and Federate #5 cannot proceed to their next “tick mark,” as each
would have to move beyond its respective LBTS values.

HLA RTI 1.3-Next Generation

3-6

The Role of Time

Federate #1
regulating

| |
i | ———— | | i | | | |
° = O

Federate #2 S mm—m———— = e e |
regulating and constrained | Lower Bound Time Stamp

LATE ARRIVING - NOT YET JOINED

\4

Federate #3 Within LBTS

regulating and constrained /
| | | | # | | | | | | | | | |
[[[[| [| [[| [[| g
® Q

Federate #4 ! Lookahead

constrained AT TTTTTT

I | | | I | -~ | | | I | |
I I I [+ I RS I I I I I I I
. O B
Federate #5 Pl
regulating and constrained = «—<*¥ A/
| | | # | | | | | | | |
[[[I [[[[[[[

\ 4

\4

® ®
Federate #6
default
4# | | | | | | | | | >
[[| [[[[[[
0 5 10 15 20 25 30 35 40 45 50 55

Figure 3-3. LBTS for Constrained Federates
3.4.2. Late Arriving Federate

Up to this point, Federate #2 has not arrived on the scene. If Federate #2 were to arrive at this
point and insist upon being both regulating and constrained, it would be constrained as follows.
At the time Federate #2 joins the federation, the LBTS of previously joined regulating federates
will be calculated. Federate #2 must assume a time that ensures it will not generate a TSO
message earlier than this LBTS. Figure 3-4 illustrates the arrival of Federate #2. When it joins
the federation as a "regulating and constrained"” federate, it is assigned an initial time of t = 20.
Note that the Federate #2's lookahead value is ignored for purposes of assigning an initial time.

HLA RTI 1.3-Next Generation

The Role of Time

Federate #1
regulating

— ¢

Federate #2
regulating and constrained

B2

| | | ¢ | | | | | |
Q

Federate #3 \

regulating and constrained Assigned Time

\ 4

. I B B B B B . R

A

Q
Federate #4
constrained
| | | | | | | | | | | | | >
[[[| # | | | | | [[[["
@
Federate #5
regulating and constrained
| | | | | | | | | | |
| [| + | | [| | [| I
®
Federate #6
default

_+
6 8 o 15 2 B 0 3F 4 4 0 55

\4

3.5

Figure 3-4. Late-Arriving Federate

"Receive-Ordered" v. "TSO" Events

In order for an event to be delivered TSO, four things must be true:

1.

A v

The sender must be "regulating."”
The receiver must be "constrained."
The event itself must be identified as TSO.

The time on the TSO packed must be greater than the LBTS contribution of the sending
regulating federate.

The third item refers to the time policy of the underlying event (e.g., an attribute update, an
interaction). In the FED file, the time management default policy for object attribute and

HLA RTI 1.3-Next Generation

The Role of Time

interaction is specified as either "receive" or "timestamp."fl Attribute instances and interaction
instances are delivered according to the time policy specified in the FED file, unless the default
policy is overridden.[o]

Per Federate Queues

FIFO Receive Queue

Priority Time-Stam .

Receive ordered events are

'\ queued as they arrive (i.e.,
% on a first-come-first-serve
basis). The FIFO queue
Time-stamp ordered events are will be drained ifthe
queued based on the associated federate provides sufficient

time value. The queue will be time to the LRC.

drained up to and including
messages at the current federate
time if the federate provides
sufficient time to the LRC.

Figure 3-5. Per Federate Queues

As illustrated in Figure 3-5, each LRC maintains two queues. Events that meet the TSO criteria
are placed in the time-stamp queue. The time-stamp queue orders incoming events based on the
time stamp. Events that fail to meet the TSO criteria are placed in the receive queue in the order
in which they arrive. Information in the receive-order queue is immediately available to the
federate. The federate has access to all events in the TSO queue with time stamps less than or
equal to the federate's perceived time.

3.5.1. EXAMPLE 1

If Federate #3 (in Figure 3-4) generates a TSO event, Federate #6 would see the event as a
receive-ordered event. The event does not arrive as a TSO event because Federate #6 is
unconstrained and therefore incapable of receiving events in time-stamped order. The same

® It is not possible to set the time policy of individual parameters of an interaction. Policy is set at the interaction level (i.e., "all or
nothing"). It is possible to specify time policy for individual attributes of an object. When an object with mixed time policies is
updated, the update may result in both receive-ordered and time-stamp-ordered events.

191t is possible to adjust time policy on a per attribute or per instance basis. See the RTlambassador methods
changeAttributeOrderType() and changelnteractionOrderType() for more details.

HLA RTI 1.3-Next Generation

3-9

The Role of Time

event sent by Federate #3 and received by Federate #2 would be received as a TSO event
because Federate #2 is constrained, and Federate #3 is regulating.

3.5.2. EXAMPLE 2

If Federate #4 attempts to generate an event that is TSO by default (i.e., according to the FED
file), the event will be sent receive ordered since Federate #4 is not regulated. Only regulating
federates may associate a time tag with an event.

3.5.3. SUMMARY

It is important to note that information can be exchanged between federates capable of
communicating TSO events and federates that are not capable of communicating TSO events.
However, the events are communicated as receive-ordered — a least common denominator
approach.

HLA RTI 1.3-Next Generation

3-10

FOM/SOM Development

4. FOM/SOM Development

The Federation Development and Execution Process (FEDEP) Model depicted in Figure 4-1,
illustrates the major activities that should take place during the life cycle of a federation. This
model starts with the definition of federation objectives through the federation development and
concludes with the results of a running federation execution.

Program
Objectives

Available
Resources

2 Y el Plann
Define Initial Planning
Federation Documents
Objectives Federation
Develop |Scenario
71| Federation vy
Co'r\m/lcoe;petlual Federation RTI RID File
Federation - Design llzlevelopment
Objectives 2 Federation | &N \ 4 User
\ FOM
Statement ‘ - Feedback
Federatlon <« - Develop | FED file
Requirement8 3 Federation A4
Federation (" Tested
Conceptual Allocated <« - - Integrate [Fegeration
Model Federates 4 and .
Test —
Seenario Federation Execute
Test Instance 5 7 Fed:;:ztlon
Evaluation Modified > Prepare
Criteria Federates | Testing Results
Data
> 6

Reusable
Products

Figure 4-1. The Federation Development and Execution Process (FEDEP) Model

The HLA Federation Development and Execution Process (FEDEP) Model is intended to
identify and describe the sequence of activities necessary to construct HLA federations. The
HLA FEDEP Model description provided here has been heavily influenced by the experiences of
the HLA prototype federations and other HLA user organizations. Federation developers may
utilize the guidelines provided by the HLA FEDEP as a baseline process that may be tailored or
modified as appropriate to meet specific objectives. In all cases, the development methodologies
used to support the varying needs and interests of different application areas have been
identified, and “best practices” merged into a single, broadly applicable, high-level framework

HLA RTI 1.3-Next Generation

4-1

FOM/SOM Development

for HLA federation development and execution This document may be obtained via the
DMSO website at II'rt't'p-7‘7‘I'rI'ard'rrrscrrnThI

DMSO has sponsored the development of several tools that automate various activities in the
Federation Development and Execution Process. These tools are distributed freely via the HLA
Software Distribution Center (SDC). Interested participants may visit the website at
http://hla.dmso.mil{to become a registered user and obtain the freely available software.

The Object Model Development Tool (OMDT) is the first tool to be developed. It is currently
available through the SDC. It supports the development of HLA compliant Simulation Object
Models (SOMs) and Federation Object Models (FOMs).

FOM and SOM development is somewhat outside the scope of a Programmer’s Guide for the
Run-Time Infrastructure. Development of a SOM and FOM is a prerequisite to effectively using
the RTI to facilitate interoperability between simulations. The FOM development process
requires that the entire system be considered to determine things such as the object model that
will describe the data communicated between the simulations, conditions for data update, and
various other information that is pertinent to the specification of a simulation system for
interoperability purposes. The Federation Execution Data (FED), which is required as an input
to the RTI, is a subset of a FOM along with the specification of some default values for Ordering
and Transport properties of data.

1 portions of this chapter are lifted directly or paraphrased from the HLA 1.3 Federation Development and Execution Process
Model.

HLA RTI 1.3-Next Generation

4-2

http://hla.dmso.mil/
http://hla.dmso.mil/

Federation Management

5. Federation Management

5.1 Introduction

This chapter introduces the RTlambassador services and FederateAmbassador callback functions
that support federation management functionality. Federation management includes such tasks
as creating federations, joining federates to federations, observing federation-wide
synchronization points, effecting federation-wide saves and restores, resigning federates from
federations, and destroying federations.

5.2 Primary Functions

Figure 5-1 illustrates the primary functions associated with the federation life cycle. The
RTlambassador functions are presented alphabetically and in considerable detail in Appendix A,
RTI::RTlambassador.

Federation Management

Life Cycle
White Federate Green Federate
RTI
LRC RTIAmbassador I LRC RTIAmbassador I

createFederationExecution()
joinFederationExecution()

joinFederationExecution()

resignFederationExecution()
resignFederationExecution()

destroyFederationExecution()

Figure 5-1. Federation Management Life Cycle
5.2.1. RTlambassador::createFederationExecution()

Because of calling the RTlambassador method createFederationExecution(), the Local RTI
Component (LRC) communicates with the RtiExec process. If the specified federation does not
exist, the RtiExec process creates a new FedExec process (as specified in Chapter 2, RTI
Synopsis) and associates it with the supplied federation name. If the specified federation already
exists, a FederationExecutionAlreadyEXists exception is raised.

Frequently the same federate executable may be called upon to create a federation and at other
times may be asked to participate in an established federation. This is certainly the case if the
same simulation code is executed multiple times to function as multiple federates in a federation.
If the FederationExecutionAlreadyExists exception is caught and ignored, then the call to

HLA RTI 1.3-Next Generation

5-1

Federation Management

createFederationExecution() is robust — creating the federation if required and tolerating the
existence of an existing federation execution.

5.2.2. RTlambassador::joinFederationExecution()

The joinFederationExecution() method is called to associate a federate with an existing
federation execution. The method provides the non-unique name of the calling federate and the
name of the federation execution that the federate is attempting to join. Additionally, a pointer to
an instance of a class implementing the FederateAmbassador callback functions is required. The
joinFederationExecution() method effectively says, "Here | am; and, here's how to get in touch
with me."”

5.2.3. RTlambassador::tick()

The tick() method is not a part of the Federation Management functionality identified in the High
Level Architecture Interface Specification Version 1.3. It is, however, a very important part of
the RTI 1.3-NG release. The LRC does a lot of work (e.g., exchanging information with
counterparts) and needs time to do that work. The tick() method yields time to the RTI.

The tick() method exists in two forms — one taking zero arguments and another taking two
arguments. The zero argument version yields time to each major activity within the LRC. A
typical activity would be draining inbound event queues and providing callbacks to the federate
via the FederateAmbassador. There is no guarantee as to the time required for a call to tick() to
complete. The two argument version of tick() also yields time to the LRC, but suggests lower
and upper bounds on the time being allotted to tick(). Like the no argument version, the two-
argument version makes no guarantees as to its overall execution time. It, too, yields time to
each major activity within the LRC, iterating as time permits.

Calling tick() is immensely important. Failure to tick() the LRC can lead to federation-wide
problems. For example, while a late arriving federate is attempting to join an existing federation,
information is being passed to the LRCs of the existing federates. If the existing federates are
not ticking their LRC, the late arriving federate (and probably everyone else) is effectively
blocked.

One final note, tick() is not an advancing time mechanism. See the Time Management section
(Chapter 6) for time advancement methodology and services.

5.2.4. RTlambassador::resignFederationExecution()

The RTlambassador method resignFederationExecution() terminates a federate's participation in
a federation. When a federate leaves a federation, something must be done with the objects for
which the federate has update responsibility. Typically, this responsibility extends to (a) object
instance (or object instance attributes) that the federate intr&duced (and has not negotiated away)
and (b) additional responsibilities the federate has assumed*

12 The specific details of object creation and ownership management are left to subsequent chapters.
HLA RTI 1.3-Next Generation

5-2

Federation Management

The sole argument to resignFederationExecution() is a member of the ResignAction
enumeration. A federate can "RELEASE ATTRIBUTES,” "DELETE OBJECTS,”
"DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES,” or take "NO_ACTION." The
resignFederationExecution() manual page provides additional details.

5.2.5. RTlambassador::destroyFederationExecution()

The destroyFederationExecution() method attempts to terminate an executing federation. If
successful, the FedExec associated with the federation terminates. If the invoking federate is not
the last federate to have resigned and there are still federates joined in the targeted federation, a
FederatesCurrentlyJoined exception is raised.

5.3 FoodFight Example

The following code excerpt demonstrates typical code for creating and joining a federation.

01 wvoid

02 CreateAndJoi nFederation (Pstring federation_nane,

03 Pstring federate_nane)

04 {

05 /1 Abstract

06 /1 Attenpt to create the FoodFi ght federation. Tolerate the fact
07 /1 that the federation may already exist -- i.e., that thisis a
08 /1 "late arriving" federate.

09

10

11 /1l Attenpt to create the FoodFi ght federation.

12 cout << "Creating the federation '" << federation_nane << "'." << endl;
13

14

15 try

16

17 rti _anmbassador. creat eFeder ati onExecuti on(federati on_nane,

18 “FoodFi ght.fed");

19 }

20 catch (RTI:: Federati onExecuti onAl readyExi st s&)

21

22 /1 Caught and ignored -- effectively allowing this condition.

23 cout << federation_name << " already exists." << endl;

24 }

25 catch (RTI:: Exception& e)

26 {

27 cerr << "createFederationExecution() produced >" << & << '<';

28 t hr ow,

}
30 catch (...)
31 {
32 cerr << "createFederati onExecution() produced unknown exception.";
33 t hr ow;
34 }

36 cout << "Rti AnbWapper: '" << federate_nane << "' joining '"
37 << federation_name << "'." << endl;

39 /1l Attenpt to join the federation.

40 for (int timer = Rti ArtbWapper:: MAX JON TRIES; timer; /*NO OP*/)
41 {

HLA RTI 1.3-Next Generation

Federation Management

42 try

44 RTI : : Feder at eHandl e fed_handl e =

45 rti _ambassador.j oi nFeder ati onExecuti on(
46 f eder at e_nane,

47 f ederati on_nane,

48 p_f edanb);

50 /1 If no exceptions encountered, abandon | oop.
51 timer = 0;

}
53 catch (RTI:: Federati onExecuti onDoesNot Exi st &)
54 {
55 if (--timer == 0)
56 {
57 cerr << "joinFederationExecution() failed."
58 t hr ow;
59 }
60 el se
61 {
62 cout << "joinFederationExecution() failed, " << tinmer
63 << " tries left." << endl;
64 :: Sl eepl nSeconds(1);
65 }

}
67 catch (RTI:: Excepti on& e)
68 {
69 cerr << "joinFederationExecution() produced >" << & << '<';
70 t hr ow;
71 }
72 catch (...)
73 {
74 cerr << "joinFederationExecution() produced unknown exception.";
75 t hr ow,

The important function calls in the proceeding example occur in lines 17 and 45 where the
federatian is created and joined, respectively. The remaining code provides running commentary
to cout*'and exception handling. The FederationExecutionAlreadyExists exceptionds caught
and essentially ignored. Most remaining exceptions are caught, logged, and re-thrown.

The call to joinFederationExecution() may produce the FederationExecutionDoesNotEXist
exception. Once createFederationExecution() is called, it takes time to create and initialize the
resulting FedExec process. The preceding code, written for RTI 1.3v6, was designed to "spin”
until the join is successful or until a predetermined number of join attempts is exhausted.
However, this technique is no longer necessary. RTI 1.3-NG is ready to accept joining federates
upon return from the createFederationExecution() invocation.

13 This code is lifted from a training example; therefore, a lot of information is printed to the standard output.

1 There are some benefits to logging exceptions at the point of occurrence and as the exception passes up the call stack. The
resulting code is a little bulky, but the stack trace can simplify debugging.

HLA RTI 1.3-Next Generation

Federation Management

The following code illustrates how a federate might resign from and destroy a federation.

79 wvoid

80 Resi gnAndDestroyFederation (Pstring federati on_nane,

81 Pstring federate_nane)

82 {

83 cout << "Resigning fromand attenpting to destroy '" << federation_nane
84 << "', " << endl;

86 try

88 rti _anmbassador. resi gnFederati onExecuti on(
89 RTI : : DELETE_OBJECTS_AND_RELEASE_ATTRI BUTES) ;

}
91 catch (RTI:: Excepti on& e)
92 {
93 cerr << "resignFederati onExecution() produced >" << & << '<';
94 t hr ow;
95 }
96 catch (...)
97 {
98 cerr << "resignFederationExecution() produced unknown exception.";
99 t hr ow,
100 }

102 try
104 rti _ambassador. dest royFeder ati onExecuti on(federati on_nane);

}
106 catch (RTI:: FederatesCurrentl|yJoi ned&)
107
108 /1 We'll allowthis condition -- catching and ignoring.
109 }
110 catch (RTI:: Excepti on& e)
111 {
112 cerr << "destroyFederationExecution() produced >" << & << '<';
113 t hr ow;
114 }
115 catch (...)
116 {
117 cerr << "destroyFederati onExecution() produced unknown exception.";
118 t hr ow,
119
120 }

The code supporting the destroyFederationExecution() call tolerates (i.e., catches and ignores)
the FederatesCurrentlyJoined exception. Other exceptions are caught, logged, and re-thrown.

Finally, the following code shows how tick() might be factored in.

121 void

122 PrinmarySimul ation (int regulating flag,

123 int constrained_fl ag)

124 {

125 /'l Abstract

126 /1 This function produces the FoodFi ght simulation.
127

128 Pstring federation_nane("FoodFi ght");

129 Pstring federate_nane("Exanpl eFederate");

130

HLA RTI 1.3-Next Generation

5-5

Federation Management

131 /1l Create and join the FoodFi ght federation.

132 :: Creat eAndJoi nFeder ati on(federation_nane, federate_nane);
133

134 while (... stuff to do ...)

135 {

136 ... do sone sinulation work ...

137

138 /1 Yield some tine to the RTI.

139 ;:rti_anbassador.tick(1.0, 1.0);

140 }

141

142 /1 Resign fromthe federation execution and attenpt to destroy.
143 . Resi gnAndDest r oyFeder ati on(f ederati on_nane, federate_nane);
144 }

This tick() example is a bit oversimplified, but introduces the notion of yielding time to the LRC.
5.4 Federate Synchronization

The RTI 1.3 specification provides functions for synchronizing activities between federates
participating in a federation. The RTI provides mechanisms for exchanging information between
federates. It is possible to associate times with exchanged information and thereby coordinate
federate activities. The Federation Management synchronization functions allow federates to
communicate explicit synchronization points. Figure 5-2 illustrates the RTlambassador service
calls extended to a federate and the resulting FederateAmbassador callback functions that
together support a synchronization capability. The RTlambassador method
registerFederationSynchronizationPoint() accepts a label, a tag, and (optionally) a set of target
federates. [By default, all federates are targeted.] The label and tag are communicated to
targeted federates. The specific role of the label and tag are outlined in detail in the appendices.

Federation Management
Synchronization

W hite Federate Green Federate
RTI

LRC RTIAmbassador I RTIAmbassador I

registerFederationSynchronizationPoint ()

synchronizationPointRegistrationSucceeded () d—ﬁ

< g announceSynchronizationPoint ()

announceSynchronizationPoint ()

synchronizationPointAchieved () i synchronizationPointAchieved ()

federationSynchronized ()

federationSynchronized ()

Figure 5-2. Federate Management Synchronization

HLA RTI 1.3-Next Generation

5-6

5.5 Save/Restore

Federation Management

The RTI provides functions for coordinating federation-wide saves and restores. Figures 5-3 and
5-4 illustrate save and restore functions, respectively. The programmer reference pages included
as Appendices A through C, should be consulted for syntactic and semantic details.

White Federate

ULEACEECEN FoderateAmbassador

requestFederationSave ()

initiateFederateSave () ny

LRC RTIAmbassador

Federation Management
Save

Green Federate

LRC RTIAmbassador

federateSaveBegun ()

federateSaveComplete ()

federationSaved () R

¢ initiateFederateSave ()

federateSaveBegun ()

federateSaveComplete ()

g federationSaved ()

Figure 5-3. Federation Management Save

Federation Management
Restore

White Federate Green Federate
[RTI

RTIAmbassador [' LRC RTIAmbassador
»
Ll

requestFederationRestore ()

federationRestoreBegun () g

federationRestoreBegun ()

g initiateFederateRestore ()

requestFederationRestoreSucceeded () 4—%

initiateFederateRestore () g

federateRestoreComplete () ‘, i federateRestoreComplete ()
federationRestored () B g federationRestored ()

Figure 5-4. Federation Management Restore

HLA RTI 1.3-Next Generation

5-7

Time Management

6. Time Management

6.1 Introduction

This chapter introduces the RTlambassador service and FederateAmbassador callback methods
that support time management functionality. The RTI provides a variety of optional time
management services. Though optional, it is important to understand the time management
models available in the RTI and the implication of exchanging events between federates with
different time management policies. Chapter 3, The Role of Time, introduces the philosophy of
time management. The focus here is on the mechanics required to implement time management
policies and negotiate time advances.

6.2 Toggling "regulating” and "constrained" Status

Chapter 3, The Role of Time, presented the definitions for "regulating” and "constrained.” Figure
6-1 identifies the RTlambassador and FederateAmbassador member functions associated with
establishing whether a federate is regulating or not, and whether a federate is constrained or not.
Key methods are presented briefly below and discussed in detail in the appendices.

Time Management
Policy

White Federate Green Federate
[Fod Code [Fed Code

RTI
m RTIAmbassador I LRC RTIAmbassador

enableTimeRegulatiof) i

timeRegulationEnablef)

disableTimeRegulatiof)

enableTimeConstrained i

timeConstrainedEnableg

disableTimeConstraingg

Figure 6-1. Toggling "'regulating’ and **constrained™ Status

HLA RTI 1.3-Next Generation

6-1

Time Management

6.2.1. Regulation Policy

Federates have regulation disabled by default. A federate uses the RTlambassador member
function enableTimeRegulation() to request that the federate be acknowledged as a regulating
federate. The Local RTI Component (LRC) calls the FederateAmbassador callback
timeRegulationEnabled() to inform a federate that the enableTimeRegulation() request has been
granted and informs the federate of its (possibly new) logical time. In Section 3.4, Advancing
Time, the effect of a late arriving federate wishing to be time regulating was discussed. In short,
such a federate is obligated to advance to a time such that the current LBTS of existing federates
is guaranteed to be honored.

It is possible to change the regulation policy dynamically. The RTlambassador method
disableTimeRegulation() is the counterpart to enableTimeRegulation(). Unlike
enableTimeRegulation(), disableTimeRegulation() takes effect immediately.

6.2.2. Constrained Policy

Federates have constrained disabled by default. A federate uses the RTlambassador member
function enableTimeConstrained() to request that the federate be acknowledged as a constrained
federate. The timeConstrainedEnabled() callback informs a federate that the
enableTimeConstrained() request has been granted. It is possible to change the constrained
policy dynamically. The RTlambassador method disableTimeConstrained() is the counterpart to
enableTimeConstrained(). Unlike enableTimeConstrained(), disableTimeConstrained() takes
effect immediately.

6.3 Time Advance Requests

Three variants of the time advancement service exist to provide the requisite functionality for
time-step, event-based, and optimistic federates. Federates may employ any combination of time
management scheme and time advancement services throughout the execution.

6.3.1. Time-Stepped Federates

Time-stepped federates will calculate values based on a point in time and then process all events
that occur up to the next point in time (current time + time step). Figure 6-2 illustrates the
functions used to advance a federate's logical time for a time-stepped simulation.

When a timeAdvanceRequest() or timeAdvanceRequestAvailable() service is used, the federate’s
LRC will be eligible to release all receive order messages from the FIFO Queue and all time-
stamp ordered messages that have a time stamp less than or equal to the time requested from the
TSO queue. After all TSO messages in a federation execution with time less than or equal to the
requested time have been received, the federate will receive a timeAdvanceGrant() callback via
the FederateAmbassador with time equal to that which was requested in the
timeAdvanceRequest() or timeAdvanceRequestAvailable. See the time management manual
pages for a more detailed discussion of the released events and the granted time for the
timeAdvanceRequest() and timeAdvanceRequestAvailable() services.

HLA RTI 1.3-Next Generation

6-2

Time Management

Time Management
Time Step Advancement

White Federate Green Federate

RTI
m RTIAmbassador I “ RTIAmbassador I

timeAdvanceRequest() l

timeAdvanceGrant()

Figure 6-2. Logical Time Advancement for a Time-Step Federate

6.3.2. Event-Based Federates

Event-based federates will calculate values based on each event received from the federation
execution. After an event is processed, the federate may need to send new events to the
federation execution. This implies that the events may not happen on set time intervals but the
times of events will be based on the time of the received events. Figure 6-3 illustrates the
functions used to advance a federate's logical time for an event-based simulation.

When a nextEventRequest() or nextEventRequestAvailable() service is used, the federate’s LRC
will be eligible to release all receive order messages from the FIFO Queue and all time-stamp
ordered messages that have a time stamp equal to the minimum next event time of any message
that will be delivered as TSO.

After all possible TSO messages with time equal to the minimum next event time have been
received, the federate will receive a timeAdvanceGrant() callback via the FederateAmbassador
with time equal to the minimum next event time or the time requested in the nextEventRequest()
or nextEventRequestAvailable(), whichever is less. See the programmer reference pages for a
more detailed discussion of the released events and the granted time for the nextEventRequest()
and nextEventRequestAvailable() services.

HLA RTI 1.3-Next Generation

Time Management

Time Management
Event-Based Advancement

White Federate Green Federate

RTI
m RTIAmbassador I “ RTIAmbassador I

l nextEventRequest()

timeAdvanceGrant()

Figure 6-3. Logical Time Advancement for an Event-Based Federate

6.3.3. Optimistic Federates

Optimistic federates do not want to be constrained by the time advancement of regulating
federates but instead will proceed ahead of LBTS to calculate and send events in the future.
These federates will want to receive all of the events that have been sent in the federation
execution regardless of the time-stamp ordering. A federate that uses the flushQueueRequest()
service is likely to generate events that are in the future of messages that it has yet to receive.
The messages that are received with a time-stamp less than messages already sent may invalidate
the previous messages. In this case, the optimistic federate will need to retract the messages that
have been invalidated and all federates that have received the invalid messages will receive a
requestRetraction() callback on their FederateAmbassador. See the programmer reference pages
for a detailed discussion of the retract() and requestRetraction() services.

When the flushQueueRequest() service is used, the federate’s LRC will be eligible to release all
receive order messages from the FIFO Queue and all time-stamp ordered messages from the
TSO queue. After all TSO messages that were in the queue at the time of the
flushQueueRequest() invocation have been released, the federate will receive a
timeAdvanceGrant() callback via the FederateAmbassador with time equal to LBTS or the time

HLA RTI 1.3-Next Generation

Time Management

requested in the flushQueueRequest(), whichever is less. See the programmer reference pages
for a more detailed discussion of the released events and the granted time for the
flushQueueRequest() service. Figure 6-4 illustrates the functions used to advance a federate's
logical time for an optimistic simulation.

Time Management
Optimistic Advancement

White Federate Green Federate

RTI
m RTIAmbassador I LRC RTIAmbassador I

flushQueueRequest() l

timeAdvanceGrant()

Figure 6-4. Logical Time Advancement for an Optimistic Federate
6.4 FoodFight Example

Time advance requests are made through the RTlambassador instance. Time advance grants are
received through the FederateAmbassador instance. User code must unite the request and grant.
This pattern is repeated throughoutthe RTI. One approach to uniting code is to communicate
through global variables (globals).* In the following examples, globals are used to tie the
following service request, callback pairs:

RTlambassador::enableTimeRegulation() — FederateAmbassador::timeRegulationEnabled()

RTlambassador::enableTimeConstrained() — FederateAmbassador::timeConstrainedEnabled()

15 Solutions that rely on globals typically do not scale well. Globals introduce a variety of additional problems. None the less,
globals are used here for compact examples where the emphasis is on the RTI application interface and not good programming
practices. Good C++ programmers should immediately see alternatives to the use of globals and will likely adopt an alternative
approach.

HLA RTI 1.3-Next Generation

6-5

Time Management

RTlambassador::timeAdvanceRequest() - FederateAmbassador::timeAdvanceGrant()

Whenever user-defined global variables or global functions are used in coding examples, they're
preceded by the global scope resolution operator ™::". While it is a bad practice to use globals, it
is a good practice to identify any globals with this operator.

globals.h
145 #ifndef gl obals_h
146 #define globals_h
147
148 #incl ude <RTI. hh>
149 :
150 // The tine of the last tinme advance grant.
151 extern RTI:: FedTi ne* p_current_time;
152
153 // The | ookahead period prom sed by this federate. Set when federate
154 // attenpts to becone regul ating.
155 extern RTI:: FedTi ne* p_l ookahead,;
156
157 // Variable indicating whether we currently have a pending time advance
158 extern int tine_advance_out st andi ng
159
160 // Flag indicating if federate is constrained
161 extern int regul ati on_enabl ed;
162
163 // Flag indicating if federate is constrained
164 extern int constrain_enabl ed;
165 :
166 #endi f
167 // globals_h

globals.cxx

168
169
170
171
172
173
174
175

#i ncl ude "gl obal s. h"

RTI::#edTine* p_current_time = new RTIfedTi me(0.0)

RTI : : FedTi ne* p_l ookahead = O; /1l Not set yet.

int tinme_advance_outstanding = 0

int regulation_enabled = 0; /1 Disabled by default.
int constrain_enabled = 0; /! Disabled by default.

::PrimarySimulation()

176
177
178
179
180
181
182
183
184
185
186

voi d

PrimarySi mul ation (int regulating flag
int constrained_flag)

{

/'l Abstract
/1 This function produces the FoodFi ght simulation.

Pstring federation_nane("FoodFi ght");
Pstring federate_nane("Exanpl eFederate");

/1l Create and join the FoodFi ght federation.

HLA RTI 1.3-Next Generation

6-6

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239 }

Time Management

.. Creat eAndJoi nFeder ati on(federation_nane, federate_nane);

/1 Set up tinme-nmanagenent services
if (regulating_flag)

{
::p_l ookahead = new RTIfedTine(1.0); // One second
::rti_anbassador. enabl eTi neRegul ati on(*::p_current _tine, *:: p_|l ookahead);
/1l A request to becone regulating is, effectively, a time advance
/'l request.
::tinme_advance_outstanding = 1
}
if (constrained_flag)
{
cout << "Federate is constrained!" << endl
::rti_anbassador. enabl eTi neConstrai ned();
}

/1 The time interval for this federate has been set (arbitrarily) to the
/1 1 ookahead val ue

RTI : : FedTi ne* p_interval = new RTIfedTi ne(0.0)

*p_interval = *::p_|l ookahead

while (::1ocal _students.entries())

{
if (!::time_advance_out st andi ng)
{
/1 Do one interval's worth of sinmnulation
/1 Atienpt to advance federate's logical tinme. The logical tine
/1 isn't officially advanced until a tine advance grant is
/! received. If a regulating federate is still attenpting to
/1 generate events, it should pretend like the tinme advance has
/1 been granted for the purpose of observing its | ookahead pronise
*::p_current_tine += *p_interval
;:rti_anbassador. ti neAdvanceRequest (*::p_current _tine);
::tinme_advance_outstanding = 1
}
/1 Work tb be interleaved with tick only!
/1 Tick the RTI, initiating federate anbassador call backs.
::rti_anbassador.tick(1.0, 1.0);
}

/1 Resign fromthe federation execution and attenpt to destroy.
: . Resi gnAndDest r oyFeder ati on(f ederati on_nane, federate_nane);

The two-argument form of tick() is called in the preceding example. In the example, the goal is
to slow the simulation so students can observe simulation progress. As an alternative to line 234,
the no-argument version of tick() might be used. Between calls to tick() and prior to receiving a
time advance grant, the federate may choose to interleave some preparatory work.

HLA RTI 1.3-Next Generation

6-7

240

Time Management

:rti_anbassador. tick(); /1 Alternative to |ine 234 above.

FoodFightFedAmb.h

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

cl ass FoodFi ght FedAnb : public Defaul t FedAnb
{
/'l Abstract
/1 The Def aul t FedAnb defines all the federate anbassador nethods
1/ to "do nothing". Here, we override the ones we're interested
/1 in.
public:
virtual void tineRegul ati onEnabl ed (const FedTi ne&)
throw (I nvalidFederationTi ne, Enabl eTi meRegul ati onWasNot Pendi ng,
Federatel nternal Error);
virtual void tinmeConstrai nedEnabl ed (const FedTi me&)
throw (I nval i dFederationTi ne, Enabl eTi meConstrai nedWasNot Pendi ng,
Federatel nternal Error);
virtual void tineAdvanceG ant (const RTI:: FedTi ne&)
throw (RTI::InvalidFederationTime, RTI::Ti meAdvanceWasNot | nProgr ess,
RTI :: Federatelnternal Error);

FoodFightFedAmb.cxx

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

voi d

FoodFi ght FedAnb: :

ti meRegul ati onEnabl ed (const FedTi ne& tine)

throw (I nvalidFederationTi ne, Enabl eTi meRegul ati onWasNot Pendi ng,
Feder at el nternal Error)

{
cout << "Federate acknow edged as regulating!" << endl;
::regul ation_enabled = 1;
;. tinme_advance_out standi ng = O;
*::p_current _tine = tine;
}
voi d

FoodFi ght FedAnmb: :

ti meConstrai nedEnabl ed (const FedTine& // Argunent ignored bel ow

throw (I nval i dFederationTi ne, Enabl eTi meConstrai nedWasNot Pendi ng,
Feder at el nternal Error)

{
cout << "Federate acknow edged as constrai ned!" << endl;
::constrain_enabled = 1;

}

voi d

FoodFi ght FedAmb: :
ti mAdvanceG ant (const RTI:: FedTi ne& tine)
throw (RTI:: I nval i dFederationTi e,
RTI : : Ti mneAdvanceWasNot | nProgress, RTI:: Federatelnternal Error)
{

if (!::tinme_advance_out standing)

HLA RTI 1.3-Next Generation

6-8

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

Time Management

{
const char* err_nsg = "Unexpected tinmeAdvanceG ant().";
cerr << err_nsg;
t hrow RTI :: Ti mnreAdvanceWasNot | nProgress(err_mnsg);
}
if (tine < *::p_current_tine)
{
const char* err_nsg = "Od tinme passed in tineAdvanceGant().";
cerr << err_msg;
throw RTI:: I nvalidFederationTi ne(err_nsg);
}
try
*::p_current_tine = tine;
::tine_advance_out st andi ng = O;
/1 Display current tine.
char* p_string(0);
p_current_tine.getPrintableString(p_string);
cout << "t = " << p_string << endl;
del ete p_string;
catch (...)
{
const char* err_nsg = "Exception caught in tineAdvanceGant().";
cerr << err_msg;
throw RTI:: Federatelnternal Error(err_nsg);
}

6.5 Time-Related Queries

Several additional time management functions are available to query or fine tune time policy.
Figure 6-4, Time Queries, shows additional functions. Consult the programmer reference pages
for these functions for detailed overall description of services.

HLA RTI 1.3-Next Generation

6-9

Time Management

Time Management

Queries

White Federate Green Federate
RTI

LRC RTIAmbassador I LRC RTIAmbassador I
queryFederateTime()
gueryLookahead()
modifyLookahead()
queryLBTS()

queryMinNextTimeEvent()

Figure 6-4. Time Queries
6.6 Polling vs. AsynchronouslO Tick() Strategies

There are currently two process model strategies that are supported by the RTI; (1) polling
process model and (2) asynchronous 1/O process model. The polling process model uses a single
thread of execution shared between the RTI and the federate. This strategy requires that the
federate provide sufficient tick() invocations to transfer processor control to the LRC and allow
the RTI to perform work. The federate must be aware that it can starve the RTI if tick is not
called appropriately. The polling strategy model was only method provided by previous RTI
releases. The asynchronous I/0O process model uses an internal thread within the RTI to avoid
starvation. This thread will periodically wake up and determine if it can perform any internal
RTI work. In the asynchronous I/O strategy the federate only needs to invoke tick when it is
prepared to handle callbacks. Use of the asynchronous I/O strategy requires the federate to
consider two key points. First, using the asynchronous 1/0 process model does not prohibit the
federate from calling tick anytime it is deemed appropriate. Second, data will be stored in the
queue until tick is called allowing for delivery and storage clearing. If tick is not called, by
either the RTI or the federate, there is a potential of memory exhaustion and data loss. Strategy
selection is made via the RTI.ProcessModel.StrategyToUse parameter in the RTLrid file. The
default strategy is the asynchronous I/O process model.

HLA RTI 1.3-Next Generation

6-10

Declaration Management

7.Declaration Management

7.1 Introduction

This chapter introduces the RTlambassador service and FederateAmbassador callback methods
that support declaration management. Declaration management includes publication,
subscription and supporting control functions. Federates that produce objects instances (or
object attributes) or that produce interactions must declare exactly what they are able to publish
(i.e., generate). Federates that consume object instances (or object attributes) or that consume
interactions must declare their subscription interests.

The RTI keeps track of what participating federates can produce and what they are interested in
consuming and sends control signals to intelligently distribute notification of what is produced
based on consumer interest. As depicted in Figure 7-1, the RTI uses control signals to inform
producers exactly what they should transmit. The goal is to keep traffic off the communications
network.

I can I can I can
produce produce consume
planes! tanks! planes!

Federate #1 Federate #2 Federate #3

Run Time Infrastructure (R)

Figure 7-1. Control Signal Schema
7.2 Object Vocabulary Review

It is worth a moment to review some basic HLA terminology.

Object classes are comprised of attributes. Object classes describe types of things that can
persist. For example, "tank” might be an object class. Objects of type "tank™ have certain
attributes (e.g., size, weight, and range). Actual, real tanks are instances of the object class tank.
The term "object" standing alone is sometimes used to describe an instance of a particular object

HLA RTI 1.3-Next Generation
7-1

Declaration Management

class, but sometimes refers to the type information. Object classes may be related to cookie
cutters and object instances to the cookies produced using the cookie cutters.

Interaction classes are comprised of parameters. Interaction classes describe types of events.
Interaction instances are specific events. It is fair to say, "Objects are similar to interactions in so
much as objects are comprised of attributes and interactions are comprised of parameters.” The
HLA recognizes this inherent symmetry and leverages it when appropriate. The primary
difference between objects and interactions is persistence. Objects persist, interactions do not.

Would a missile be described by an object class or an interaction class? The answer depends on
the simulation and the persistence of missile instances. A simulation that focuses on missile
launchers and their targets may perceive missiles (or missile launches) as events. The launcher
fires a missile, which effects some damage. The time that the missile is in the air may be trivial
with respect to the simulation. Here, the missile could be modeled as an interaction — possibly
between the launcher and the target. Another simulation may focus on the in-flight
characteristics of missiles. The fact that the missile launches or impacts may be incidental.
Here, the missile persists and should be modeled as an object.

7.3 Object Hierarchies

Figure 7-2 illustrates a class hierarchy and accompanying Venn diagram. Object classes and
interaction classes can be constructed hierarchically. For example, assume that objects of type
W are comprised of the attributes "a,” "b," "c," and "d" — abbreviated "{a, b, ¢, d}." It is possible
to define object classes that extend object class W. Object class W is extended to produce the
object classes X and Z. Object class X is further extended to produce the object class Y.

W: {a, b, c,d}

coow|S

X:{a.b.c.d.e.f. g} Z:{ab,c,di,j}

— =N

Q - | X

T

Y:{a b,cdefg h}

=y

HLA RTI 1.3-Next Generation

Declaration Management
Figure 7-2. Class Hierarchy — Venn Diagram

Object-oriented programming enthusiasts will recognize such hierarchical representations.l’f—e'I

Various communities use different phrases to describe object hierarchies. Some examples
include:

X extends W. Y inherits from X.
W is a base type. W is an ancestor of Z.
X'is derived from W. X'is a child of W.
Y is a descendant of W. Y and Z are leaf objects.
W is the parent of Z. W is the superclass of X.

Xis a subclass of W.

The basic idea is that when an object class is extended to produce a new object class, the new
object class contains all the attributes of the class being extended and possibly more. The object
diagram and Venn diagram (Figure 7-2) illustrate the relationship between the object classes W,
X, Y,and Z. Object class W has the four attributes {a, b, c, d}, class X adds the attributes {e, f,
g} so instances of class X have attributes {a, b, c, d, e, f, g}.

7.4 Publishing and Subscribing Objects

Each federate must publish the object classes and interaction classes it plans to produce. It is
possible for a federate to publish a subset of the available attributes for a given class.

18 Developers with a strong object-orientation should note that HLA "objects" are defined primarily by their constituent data

elements rather than on behavior. In this way, HLA "objects" have more in common with relational models than object-oriented
models.

HLA RTI 1.3-Next Generation

Declaration Management

Federate #1 Publishes Y w/
the following attributes:

{b, e, f, g, h}.

Federate #2 Publishes

e ... \ and Subscribes
to X w/ the Tollowing
attributes: {a, b, c, d, e}.

Figure 7-3. Object Publishing
7.4.1. Object Publication

In Figure 7-3, the object class Y contains the attributes {a, b, c, d, e, f, g, h}. A federate can
create instances of object class Y, without specifying all of the attributes associated with Y. For
example, Y might be a particular kind of aircraft. A given federate may know some information
about aircraft instances (e.g., position information), but relies on other federates to "fill in" the
missing pieces (e.g., intelligence about the aircraft). In such a case, the federate would indicate
that it could publish particular attributes associated with Y. Here, Federate #1 indicates that it
can publish attributes {b, e, f, g, and h} and Federate #2 indicates that it can publish attributes {a,
b, ¢, d, and e} for object class Y.

Each federate must indicate explicitly which attributes it can produce (i.e., introduce or update)
on a per class basis. Multiple federates may be able to publish Y instances. Federate #3 might
publish all of the attributes associated with object class Y. Another federate, Federate # 7, may
be able to publish attributes {a, c, f} for Y.

An implicit attribute, known by the name "privilegeToDelete,” is included whenever a
publication capability is registered for an object class. Only the federate that created a particular
object instance is allowed to delete the instance unless the privilege to delete is conveyed to
another Federate. Chapter 9, Ownership Management, explores the ability to exchange attribute
update and object deletion responsibility among federates.

A federate must explicitly state every object class it intends to produce via the RTlambassador's
publishObjectClass() method. A separate call to publishObjectClass() is required for every
object class including objects that appear in class hierarchies. If Federate #9 wishes to produce
instances of object classes W, X, Y, and Z, it must say so explicitly using four publication calls
(one per object class).

HLA RTI 1.3-Next Generation

7-4

Declaration Management

7.4.2. Interaction Publication

As with object classes, each federate must state explicitly which interaction classes it intends to
produce using the publishinteractionClass() method. Interactions are produced as "all or
nothing." It is not possible to specify which parameters in an interaction will be published. If a
federate indicates that it intends to publish an interaction, it must be capable of specifying all
parameters associated with the interaction.

7.4.3. Object Subscription

Federates indicate their interest in certain object classes via the RTlambassador method
subscribeObjectClassAttributes(). Object subscription differs from object publication. When a
federate subscribes to an object class, it is expressing an interest in learning about all object
instances of the class. For example, a federate subscribing to object class X (as shown in Figure
7-2) will discover all instances of class X produced by other federates in the federation.
Additionally, a federate subscribing to X will discover all instances of class Y (produced by
other federates) as though they were instances of class X. This is an example of type promotion.

Whenever a federate expresses a subscription interest in a particular object class, the RTI
presumes that the federate is interested in instances of the descendant classes as well. A federate
subscribing to class W would see external instances of classes X, Y, and Z as instances of class
W. This can be a useful tool. Class W might represent all aircraft. Class X might represent
military aircraft, while class Y represents commercial aircraft. A federate may wish to know
about all aircraft, but not care about the details — including the military v. commercial
designation.

A federate is informed about a new object instance if (a) the federate has subscribed to the object
class of the instance or (b) the instance can be promoted (i.e., up the hierarchy) to a subscribed
object class. When an object is promoted, attributes particular to the_original class are dropped.
An instance of object class Y has attributes {a, b, ¢, d, e, f, g, and h}.* A federate subscribing to
object class X can discover the Y instance as an X. Since attribute "h™ is not present in instances
of class X, that information is lost.

A federate can subscribe to multiple classes in a class hierarchy. If a federate subscribed to class
W and X, the following would be true:

* Instances of object class W would be seen without promotion.
» Instances of object class X would be seen without promotion.
» Instances of object class Y would be seen as instances of object class X.

» Instances of object class Z would be seen as instances of object class W.

17 Some attributes may not have assigned values. It depends on what the originating federate has published for this object and the
extent to which other federates have contributed to what's known about the instance.

HLA RTI 1.3-Next Generation

Declaration Management

When a federate discovers an object, it learns the object class of the instance. If the federate
discovers the object instance to be of object class X, it will always believe the object’s type to be
X. If a federate subscribes to class X and not to class Y, it will discover Y instances as X
instances. If the federate subsequently subscribes to class Y, object instances previously
discovered as X instances (via promotion) will continue to be seen as X instances. Sutﬁ]equently
discovered instances of object class Y will be discovered as instances of object class Y.

7.4.4. Interaction Subscription

As with object classes, each federate subscribes to the interaction classes it wishes to receive. It
is not possible to subscribe to individual parameters of an interaction class. Again, interactions
are "all or nothing." As with object classes, a federate is informed about a new interaction if (a)
the federate has subscribed to the interaction class of the interaction or (b) the interaction can be
promoted (i.e., up the hierarchy) to a subscribed interaction class. When an interaction instance
is promoted, only the parameters of the subscribed class are presented to the receiving federate.

7.4.5. Control Signals

In Figure 7-3, above, Federate #1 indicated that it was capable of producing Y instances, but
could only provide the attributes {b, e, f, g, and h}. In that same figure, Federate #2 subscribes
to attributes {a, b, c, d, and e} for object class X. The Y instances produced by Federate #1 are
discovered as X instances by Federate #2.

Federate #2 is only interested in a few of the Y attributes produced by Federate #1. As discussed
previously, Federate #2 cannot access attribute "h™ since the attribute is not a part of class X.
Further, Federate #2 has no interest in attributes {f, g}. Of the information Federate #1 is able to
produce Y:{b, e, f, g, h}, only the information Y:{b, e} is required — assuming Federate #2 is the
only other federate in the federation.

The RTI issues control signals to indicate the information Federate #1 should produce. By
default, a federate should refrain from producing object updates unless the Local RTI
Component (LRC) has indicated that a consumer exists. If Federate #1 is first on the scene (i.e.,
there are no consumers), it will never be signaled to begin registering Y instance information.

Once Federate #2 arrives, the LRC will indicate to Federate #1 that it should register any
instances of object class Y with the federation execution and it should start providing updates for
Y:{b, e}. If Federate #2 goes away, Federate #1 will be told to stop registering instances of
object class Y and to stop providing updates for Y:{b, e}.

Each LRC informs it’s federate (via callbacks) which object attributes and which interactions to
start or stop producing based on consumer demand. Each federate’s Simulation Object Model

18 Rediscovery of an object instance can be forced using the RTlambassador::localDeleteObjectinstance() service. After object
class Y was subscribed to, a federate could “locally delete” all instances of object class X to rediscover the objects based on the
federate’s new subscriptions.

HLA RTI 1.3-Next Generation

7-6

Declaration Management
(SOM) will identify the extent to which the federate does or does not make use of the control
signals provided by the LRC.
7.5 Object Publication and Subscription

Each federate is responsible for identifying its publication and subscription interests to the RTI
LRC using the RTlambassador methods subscribeObjectClassAttributes()and
publishObjectClass(). The interaction diagram shown in Figure 7-4, Object Publication and
Subscription illustrates the procedure for building the information required to use these methods.

The publish and subscribe methods both require an RTI::ObjectClassHandle and an
RTI::AttributeHandleSet. The LRC has an internal representation for object classes, object class
attributes, interaction classes and interaction class parameter string representations that appear in
the FED file. RTlambassador methods like getObjectClassHandle() and getAttributeHandle()
translate character descriptions into LRC handles.

The (abstract) class RTI::AttributeHandleSet identifies a set of attributes — e.g., {a, b, ¢, d}. To
express interest in publishing or subscribing to an object class, the following steps are required.

For each object class to be published:
a) Obtain the handle for the current object class.

b) Create a free-store allocated AttributeHandleSet using the static create() method in the
class AttributeHandleSetFactory.

c) For each attribute the federate can publish:
i) Obtain the handle for the current attribute.
i) Add the handle to the AttributeHandleSet
d) Publish/Subscribe the AttributeHandleSet for the object class.

e) Empty and delete the set if no longer needed.

HLA RTI 1.3-Next Generation

7-7

Declaration Management

Declaration Management

Objects
White Federate Green Federate
Fed Code
RTI
=it B rriambessasor |
getObjectClassHandlg)
getAttributeHandlg)

publishObjectClasy)
subscribeObjectClassAttributeg)

startRegistrationForObjectClasg) 4—l

stopRegistrationForObjectClasg) l

unpublishObjectClasy)

unsubscribeObjectClasy)

Figure 7-4. Object Publication and Subscription

7.6 Throttling Publications

The LRC signals a federate (via callbacks, as shown in Figure 7-4) to start or stop registering
object instances for all published object classes and generating interactions for all published
interaction classes.

7.7 FoodFight Object Declaration

The following code excerpts demonstrate publication and subscription to the object class
"Student” which has attributes "LunchMoney,” "Cleanliness,” and "AmmoAmount.” The class

HLA RTI 1.3-Next Generation

Declaration Management

name and attribute names would appear in the FED fileEl The student object class also has the
hidden attribute "privilegeToDelete."]

7.7.1. Excerpt from Student.h

The following excerpt is taken from the declaration of the C++ class "Student." In this example,
a C++ class is used to realize the HLA object class "Student.” This is but one possible way of
realizing an HLA object class. Information about students could be maintained in a database or a
C structure.

Student.h
327 :
328 cl ass Student
329 {
330 friend ostream& operator<< (ostream& const Student&);
331
332 public:
333 /1 In the follow ng enuneration, ATTRIBUTE _COUNT denotes the end of the
334 /! enumeration and is equal to the total nunber of attributes.
335 enum AttributeNanmes { PRI VILEGE TO DELETE = 0, LUNCH MONEY,
336 CLEANLI NESS, AMMO_AMOUNT, ATTRI BUTE_COUNT };
337
338 static const char* attribute_nanmes[];
339
340 /'l Variables to store class handl es.
341 static RTI:: Objectd assHandl e cl ass_handl e;
342
343 /!l Array to store attribute/paraneter handl es.
344 static RTI::AttributeHandl e attributes[];
345
346 static RTI::AttributeHandl eSet* p_all _attribute_vector;
347
348 static void RegisterOhject ();
349
350
351
352
353 /1 Student Characteristics
354 RTI:: CbjectHandl e getld () const { return id_self; }
355 doubl e get LunchMoney () const { return |unch_noney; }
356 doubl e getCl eanliness () const { return cleanliness; }
357 | ong get AmoAmount () const { return amo_anount; }
358
359 protected:
360 static const int BUY_AMMO CHANCE;
361 static const doubl e AMMO COST_MEAN,

19 As of the RTI 1.3-NG release, names appearing in the FED file are case insensitive, so class "Student” could be specified
"student,” "STUDENT," or "StUdENT." In general, the case of the names in the Federation Object Model (FOM), Federation
Execution Data (FED), and federate source code should be considered as case-sensitive to ensure interoperability with all RTIs.

2 The privilegeToDelete attribute does not have to appear explicitly in the attribute publication list. It is included in the

Federation Execution Data (FED) file as the sole attribute of the objectRoot base class that all federation defined objects will
extend.

HLA RTI 1.3-Next Generation

Declaration Management

362 static const double AMMO COST_ADJ;

363 static const int ATTEMPT_LAUNCH CHANCE;

364

365 RTI:: CbjectHandl e id_self; // RTlI ID by which this student is known.
366 doubl e | unch_noney; /!l Funds for new anmo.

367 doubl e cl eanl i ness; /1 Food damage the student has sust ai ned.
368 unsi gned | ong ammo_anmount; // Launchabl e food possessed.

369

370

371 };

The static function Student::RegisterObject() will eventually contain the code that registers this
federate's publication and subscription requests with regard to the object class Student. To
support this static registration process, several static variables are declared. The
Student::AttributeNames enumeration provides an identifier for each attribute in the HLA object
class Student. The static handle Student::class_handle will contain the LRC's internal
representation of the Student object class (type). The static array Student:: attribute_names will
hold the string representation of each attribute in Student. The static array Student::attributes
will house the LRC's internal handle for each Student attribute. Eventually, the pointer
Student::p_all_attribute_vector will identify a free-store aﬂjocated attribute handle set containing
all the attribute handles we wish to publish and subscribe.

Student.cxx

Definitions for Student static variables are as follows.

372 :

373 const char* Student::attribute_nanes[Student:: ATTRI BUTE_COUNT] = {
374 "privilegeToDel ete", "LunchMney", "d eanliness", "AmpAnount" };
375

376 RTI:: Obj ectd assHandl e Student:: cl ass_handl e

377 = RTl:: ObjectC assHandl e(); // Default constructor provides null handl e.
378

379 RTI:: AttributeHandl e Student::attributes[Student:: ATTRI BUTE_COUNT] ;

380

381 RTI::AttributeHandl eSet* Student::p_all _attribute_vector = O;

382 :

The publish and subscribe registration process is conducted by the static function
Student::RegisterObject().

383 void

384 Student:: Regi sterObject ()

385 {

386 /1 Abstract

387 /1 Regi ster the class. Then, register each attribute recording the

2L |n this particular example, the federate wishes to publish and subscribe all attributes of Student. In other applications a class
might be published only, subscribed only, or the set of published attributes may be entirely different from the set of subscribed
attributes.

HLA RTI 1.3-Next Generation

7-10

Declaration Management

388 /1 correspondi ng handle in the vector of all attributes (e.g.
389 /1 p_all _attribute_vector).

390

391 const char* object_name = "Student";

392 cout << "Registering '" << object_nane << "'." << endl;

393

394 class_handl e = ::rti Anb. get Obj ect Cl assHandl e(obj ect _nane) ;

395

396 if (p_all_attribute_vector) delete p_all _attribute_vector;

397

398 p_all _attribute_vector

399 = RTI:: Attribut eHandl eSet Factory: : creat e(St udent: : ATTRI BUTE_COUNT) ;
400

401 for (int i = 0; i < ATTRIBUTE_COUNT; i++)

402 {

403 cout << "\tCetting attribute handle for '" << attribute_nanes[i]
404 << "', " << endl

405

406 RTI:: AttributeHandl e handle = ::rti Anb. get Attri but eHandl e(

407 attribute_nanes[i]

408 cl ass_handl e) ;

409

410 /1 Here, we maintain an array of handles and an attribute vector
411 /1 that contains all the handles for this class.

412 attributes[i] = handle

413 p_all _attribute_vector->add(handl e);

414 }

415

416 /1 Publish and subscribe to all attributes.

417 ::rti Anb. publ i shQbj ectd ass(class_handl e, *p_all _attribute_vector);
418 ::rti Amb. subscri beCbj ect G assAttri butes(

419 cl ass_handl e,

420 *p_all _attribute_vector);

421

422 /1 NB: For now, not bothering to delete p_all_attribute_vector. It wll
423 /1 live as long as the program does.

424 }

RegisterObject() closely follows the interactions identified in Figure 7.4, Object Publication and
Subscription.

7.7.2. Dynamic Object Publication and Subscription

Each call to publishObjectClass() and subscribeObjectClassAttributes() for an object class
replaces previous calls. The methods unpublishObjectClass() and unsubscribeObjectClass()
should be called when a federate is no longer interested in any attributes of an object class.

7.8 Publishing and Subscribing Interactions

Registering publication and subscription interest in interaction classes is more straightforward
than registering interest in object classes. Figure 7-5, Declaring Interactions, identifies
RTIlambassador declaration management methods. Unlike object registration, interactions do not
have to be registered because they do not persist and you cannot specify interest in particular
interaction parameters. Interactions are "all or nothing."

HLA RTI 1.3-Next Generation

7-11

Declaration Management

Declaration Management

Interactions

White Federate

LRC RTIAmbassador i)

Green Federate

Fed. Code FederateAmbassador

m RTIAmbassador I

getinteractionClassHandle() ’

publishinteractionClass()

turninteractionsOn() ;
turninteractionsOff() - l !

unpublishinteractionClass() \ !

subscribelnteractionClass()

unsubscribelnteractionClass()

Figure 7-5. Declaring I

nteractions

Splat.h
425 cl ass Spl at
426 {
427 friend ostream& operator<< (ostream& os, const Splaté& splat);
428
429 public:
430 enum Par anet er Nanes { ENSU NG_MESS, TARGET, PARAMETER COUNT};
431
432 static const char* paraneter_nanmes[];
433
434 /1 Variables to store class handl es.
435 static RTIl::InteractionCl assHandl e i nteracti on_handl e;
436
437 /!l Array to store attribute/paraneter handl es.
438 static RTI:: ParaneterHandl e paraneters[];
439
440 static void Registerlinteraction ();
441 :
Splat.cxx

HLA RTI 1.3-Next Generation

7-12

Declaration Management

442 const char* Spl at:: paraneter_nanes[Spl at: : PARAMETER_COUNT] = {
443 "Ensui ngMess", "Target" };

444

445 RTl::InteractionCl assHandl e Spl at::interaction_handle

446 = RTIl::Interactiond assHandl e(); /1 Null handle.

447

448 RTI :: Par anmet er Handl e Spl at : : par anet er s[Spl at : : PARAMETER_COUNT] ;
449

450

451 voi d

452 Splat:: Registerlnteraction ()

453 {

454 const char* interaction_name = "Splat";

455 cout << "Registering '" << interaction_nane << "'." << endl;
456

457 /! Register the interaction.

458 interaction_handle = ::rti Anb. getlnteracti onC assHandl e(i nteraction_nane);
459

460 for (int i = 0; i < PARAMETER _COUNT; i ++)

461 {

462 cout << "\tGetting paraneter handle for '" << paraneter_names[i]
463 << """ << endl;

464

465 parameters[i] = ::rti Anb. get Par anet er Handl e(

466 par anmet er _names|[i],

467 i nteracti on_handl e);

468 }

469

470 /1 Publish and subscribe interaction.

471 ;:rti Anb. publishlnteracti onC ass(interacti on_handl e);

472 ::rti Amb. subscri bel nteractiond ass(interaction_handl e);

473 }

As with object class declaration, interaction interest can be declared dynamically. Each call to
publishinteractionClass() and subscribelnteractionClass() for an interaction class replaces
previous calls. The methods unpublishinteractionClass() and unsubscribelnteractionClass()
should be called when a federate is no longer interested in an interaction class.

HLA RTI 1.3-Next Generation

7-13

Object Management

8. Object Management

This chapter introduces the RTlambassador service and FederateAmbassador callback methods
that support object management. Object management includes instance registration and instance
updates on the object production side and instance discovery and reflection on the object
consumer side. Object management also includes methods associated with sending and
receiving interactions, controlling instance updates based on consumer demand, and other
miscellaneous support functions.

8.1 Registering, Discovering, and Deleting Object Instances

Figure 8-1 illustrates the required interactions for object instance registration and discovery. The
RTlambassador method registerObjectinstance() informs the Local RTI Component (LRC) that a
new object instance has come into existence. The method requires the object class of the new
object instance and an optional object name. The method returns an RTI::ObjectHandle which
the LRC uses to identify the particular object instance.

Object Management

Objects
White Federate Green Federate
RTI
m RTIAmbassador I LRC RTIAmbassador I

registerObjectinstance ()

discoverObjectinstance()

turnUpdatesOnForObjectinstance () R gy i

deleteObjectinstance () l

removeObjectinstance ()

Figure 8-1. Object Management Methodology

Registration introduces an object instance to the federation. However, it does not provide
attribute values for the instance. That requires a second step.

HLA RTI 1.3-Next Generation

8-1

Object Management

Each and every object can be deleted by exactly one federate. Initially, the federate that creates
(registers) an object has the privilege to delete the object® In Figure 8-1, the RTlambassador
method deleteObjectinstance() is called to remove a registered object. The FederateAmbassador
removeODbjectinstance() callback informs federates that a previously discovered object no longer
exists. The RTlambassador method localDeleteObjectinstance() effectively "undiscovers” an
object instance. This method does not ensure the object will be permanently undiscovered. This
service is intended to be used when a federate discovers an object as an instance of an object
class but would like to subscribe to object classes that extend the discovered class and then
rediscover the instance based on the new subscriptions. The object instance will be rediscovered
upon the next updateAttributeVValues() invocation that meets the receiving federate’s
subscriptions.

8.2 Updating and Reflecting Object Attributes

To update one or more attributes associated with a registered object instance, a federate must
prepare an RTI::AttributeHandleValuePairSet. This set is similar to the RTI::AttributeHandleSet
discussed in Chapter 7, Declaration Management. An AttributeHandleSet, abbreviated AHS,
identifies a set of attributes. An AttributeHandleValuePairSet, AHVPS, identifies a set of
attributes and their values. The static function_RTI::AttributeSetFactory::create() is used to
construct a free-store allocated AHVPS instance.® In Chapter 7, Declaration Management, the
notation {a, b, ¢, and d} was used to identify four attributes by name. The notation can be
extended to accommodate attribute values —e.g., {a =5, b = "Hello", ¢ = 14.79821, d = -12}.

Attribute updates are provided for an object instance via the RTlambassador method
updateAttributeValues(). The method requires an ObjectHandle, which the LRC uses to identify
an object instance, an AHVPS and a descriptive character string (tag). An optional FedTime
argument will have meaning if the federate is "regulating,” and one or more contained attributes
are TSO (see Chapter 3, The Role of Time, and Chapter 6, Time Management).

Figure 8-1 (previously introduced) and Figure 8-2, Object Management Updates, illustrates the
interactions required to discover and to reflect updates for external object instances. Discovery
is the counterpart to registration. Reflection is the counterpart to attribute updates. The
FederateAmbassador callback method discoverObjectinstance() informs the federate that a new
object instance has come into existence. The method provides an object handle, which will be
used to identify the object for subsequent updates. The method also identifies the object class of
the new object instance. It is important to note that the ObjectHandle is a global representation
maintained by the LRC. The same object instance is known to all federates by its globally
unique handle value.

22 Chapter 9, Ownership Management, explores functions for giving away the privilege to delete as well as the right to update
various attributes.

2 AHVPS is actually an abstract class; so, the factory function produces an AHVPS descendant (implementation).
HLA RTI 1.3-Next Generation

8-2

Object Management

Object Management
Updates

White Federate Green Federate

‘ AL Federate Ambassador ‘Fed' Sl FederateAmbassador

RTI
m RTIAmbassador I m RTIAmbassador I

requestClassAttributeValueUpdate ()

provideAttributeVValueUpdate () 4—l
provideAttributeVValueUpdate () 4—l

updateAttributeValues() l

requestObjectAttributeValueUpdate ()

g reflectAttributeValues()

Figure 8-2. Object Management Updates

8.3 Encoding and Object Update

When producing an AHVPS, the federate is responsible for any data marshaling (encoding). The
LRC knows nothing about data content. It knows the names of object classes, the names of
attributes and the handle representations for object classes and attributes. The following code
demonstrates how an AHVPS is produced for the Student class introduced in previous chapters.
Data is encoded and the length of the encoding is communicated to the LRC* Ultimately, the
AHVPS is bound to an object instance handle in an updateAttributeVValues() invocation.

In the example, each instance of the C++ class "Student” has an AHS named
"require_update_vector"”. As the state of Student instances change, affected attributes are added
to this update vector. The AHVPS is formed by iterating through the AHS update vector and
building handle-value pairs.

24 The AHVPS actually consist of triples, not pairs. The triple is (1) the attribute handle, (2) the corresponding value and (3) the
length of the encoding.

HLA RTI 1.3-Next Generation

Object Management

In the following example, the macro REINTERPRET_CAST(TYPE, EXPR) should be defined
as "reinterpret_cast<TYPE> (EXPR)" on platforms that support ANSI-style casts. With dated
compilers, a traditional cast might be used instead — "(TYPE) (EXPR)".

474 RTI:: Attri but eHandl eVal uePai r Set *
475 Student: : get Updat edVal ues ()

476 {

477 /1 Abstract

478 /1 Get AHVPS containing entries for every handle in the update
479 /1 vector (only!).

480

481 cout << id_self << " identifying updates." << endl;

482

483 RTI :: Attri but eHandl eVal uePairSet* p_set = 0;

484

485 if (require_update_vector.size()) /1l I's there work to do?
486

487 p_set = RTI::AttributeSetFactory::create(

488 requi re_update_vector.size());

489

490 for (unsigned long i = 0; i < require_update_vector.size(); ++i)
491

492 RTI:: Attri but eHandl e handl e

493 = require_update_vector. get Handl e(i);

494

495 if (handl e == Student::attributes[LUNCH MONEY])

496 {

497 p_set - >add(

498 handl e,

499 REI NTERPRET_CAST(const char*, & unch_noney),
500 si zeof (doubl e));

501 }

502 else if (handle == Student::attributes[CLEANLI NESS])
503 {

504 p_set - >add(

505 handl e,

506 REI NTERPRET_CAST(const char*, &cl eanliness),
507 si zeof (doubl e));

508 }

509 else if (handle == Student::attributes][AMMO AMOUNT])
510 {

511 p_set - >add(

512 handl e,

513 REI NTERPRET_CAST(const char*, &ammo_anount),
514 si zeof (unsi gned |l ong));

515 }

516 else if (handle == Student::attributes[PRI VI LEGE_TO DELETE])
517

518 /1 Nothing to do. No reason to pass this (and it probably
519 /1 shouldn't occur.

520 }

521 el se

522 {

523 const char* p_nsg = "Student:: get Updat edVal ues() saw "
524 "unrecogni zed handl e.";

525 cout << p_nsg << endl;

526 throw RTI:: Attribut eNot Known(p_nsg);

527 }

528 }

HLA RTI 1.3-Next Generation

Object Management

529

530 requi re_update_vector.enmpty();

531 }

532

533 return p_set;

534 }
The example demonstrates the cascading "if" statements required to identify an arbitrary attribute
handle. It is tempting to try a switch() statement, but the LRC attribute values are not known
prior — so, constant-based switching is ruled out. Clearly, the approach used in this code
wouldn't scale for objects with large numbers of attributes. For such cases, it may be preferable
to (a) use a map (i.e., a hashing dictionary) to store attributes or (b) use fewer, more complex
attributes.

Attribtﬁes can be arbitrarily complex as long as they are documented properly in the FOM and
SOM.*" However, complicated attributes may be less reusable. It is a good idea to collect only
those things that genuinely belong together both in terms of the information and the update
frequency. For example, {longitude, latitude, altitude} might be combined into the single
attribute {position}. But, combining {name, grossWeight, fuelSupply} into a single attribute
would be a poor combination since the attribute "name" is likely to be updated at a very different
rate than "grossWeight" and these attributes may not belong together.

The demonstration code above does not take any steps to ensure that data is encoded in a
platform-independent way. This encoding strategy would not survive a federation with big
endian and little endian federates.

8.4 Decoding and Object Reflection

The FederateAmbassador callback method reflectAttributeValues() provides an AHVPS. The
following function decodes the AHVPS in a manner consistent with the encoding strategy.

535 void

536 Student::refl ectExternal Changes (const RTI:: AttributeHandl evVal uePair Set & set)
537 {

538 /1 Design Notes

539 /1 Val ues are bit copied; so, exanples will not work across
540 /1 big/little endian boundari es.

541

542 cout << id_self << " incorporating reflected changes." << endl;
543

544 char buffer[MAX_ BYTES PER VALUE] ;

545 unsi gned | ong | engt h;

546

547 /1 Iterate through the set, nodifying corresponding attributes.
548 for (unsigned long i = 0; i < set.size(); ++i)

549

550 RTI:: AttributeHandl e handl e = set. getHandl e(i);

551

552 if (handl e == Student::attributes[LUNCH MONEY])

% An existing hardware component utilizing a complex data structure, might provide updates for the whole structure rather than
structure components. In such cases, the whole structure might be combined to form a single attribute.

HLA RTI 1.3-Next Generation

Object Management

553 {

554 set.getValue(i, buffer, length);

555 | unch_noney = *REI NTERPRET_CAST(doubl e*, buffer);

556 }

557 else if (handle == Student::attributes[CLEANLI NESS])

558 {

559 set.getValue(i, buffer, length);

560 cl eanl i ness = *RElI NTERPRET_CAST(doubl e*, buffer);

561 }

562 else if (handle == Student::attributes][AMMO AMOUNT])

563 {

564 set.getValue(i, buffer, length);

565 amo_anount = *RElI NTERPRET_CAST(unsi gned | ong*, buffer);
566 }

567 else if (handle == Student::attributes[PRI VI LEGE_TO DELETE])
568

569 /1 Nothing to do. Should not really be included in any update.
570 }

571 el se

572 {

573 const char* p_msg = "Student::refl ect Ext ernal Changes() saw "
574 "unrecogni zed handle.";

575 cout << p_nsg << endl;

576 throw RTI:: Attri but eNot Known(p_nsgq);

577 }

578

579 }

8.5 Exchanging Interactions

Interactions are constructed in a similar fashion to the way attribute updates are constructed.
Recall th&ﬁ objects persist, interactions do not. Each interaction is constructed, sent, and
forgotten.®™® Interaction recipients receive, decode, and apply the interaction. Figure 8-3,
Exchanging Interactions, lists the classes and methods involved in generating and consuming
interactions. RTlambassador methods are discussed in Appendix A, RTI::RTlambassador,
FederateAmbassador methods in Appendix B, RTI::FederateAmbassador, and the supporting
types (e.g., ParameterHandleValuePairSet and ParameterSetFactory) in Appendix C, Supporting
Types and Classes.

% |nteractions can be retracted. See the manual pages for details.
HLA RTI 1.3-Next Generation

8-6

Object Management

Object Management
Interactions

White Federate Green Federate
RTI
LRC =
sendInteraction() i
g ecennerscion).

Figure 8-3. Exchanging Interactions

8.6 Additional Object Control

Object attribute updates and interactions are conveyed between federates using one of two data
transportation schemes — "reliable” and "best effort”. For objects, the transportation scheme is
specified at the level of individual attributes. For interactions, the transportation scheme is
specified at the interaction level (i.e., not the parameter level). By default, the transportation
scheme is specified per object/attribute name and per interaction name in the Federation
Execution Data (FED) file.

It is possible to change the transportation scheme dynamically for one or more attributes of a
specific object instance using the RTlambassador method changeAttributeTransportType(). It is
possible to change the transportation scheme dynamically for interactions by class name using
the RTlambassador method changelnteractionTransportType(). Figure 8-4 illustrates these
functions.

HLA RTI 1.3-Next Generation

Object Management

user_code fedamb : Federate rtiamb : various : Misc
Ambassador RTlambassador| | RtiLibClasses
Federate Initiated Controls ﬁ
| |

\
‘ changeAttributeTransportType (RTI::ObjectHandle,
const RTI::AttributeHandleSet&,
‘ RTI::TransportationHandle)

|

‘ changelnteractionTransportType (RTI::InteractionClassHandle,
RTI::TransportationHandle)
|

RTI Initiated Controls ﬁ

| const RTI::AttributeHandleSet&)

\
turnUpdatesOffForObjectinstance (RTI::ObjectHandle,

P const RTI::AttributeHandleSet&)
’\

|
\
‘ turnUpdatesOnForObjectinstance (RTI::ObjectHandle,

Figure 8-4. Additional Object Control

Figure 8-4 also shows two callback methods - turnUpdatesOnForObjectinstance() and
turnUpdatesOffForObjectinstance(). These methods are used to inform a federate wﬁther or not
there is external interest in updates for specific attributes of specific object instances.

8.6.1. Attribute Management

A particular federate may have created and registered a particular F-15 fighter. If one or more
federates are subscribed to overlapping attributes of this published object class, the LRC would
issue the turnUpdatesOnForObjectinstance() callback to specify the particular attributes for
which updates should be generated. If at some future point, there are no subscribed federates to
the F-15 object class, the LRC would invoke turnUpdatesOffForObjectinstance() — informing the
federate to cease updates for this particular object instance.

The federate should presume that there is no external interest (one or more subscribed federates)
in an object unless or until turnUpdatesOnForObjectinstance() is issued. Calls to
turnUpdatesOnForObjectinstance() and turnUpdatesOffForObjectinstance() are cumulative.
Each call to turnUpdatesOnForObjectinstance() adds to the set of attributes that should be
updated. Each call to turnUpdatesOffForObjectinstance() removes attributes from the set of
attributes that should be updated.

%" These functions are companions to the declaration management callback methods startRegistrationForObjectClass() and
stopRegistrationForObjectClass() (see Chapter 7, Declaration Management).

HLA RTI 1.3-Next Generation

Object Management

8.6.2. Enable/Disable Attribute Management

It is possible to disable the turnUpdatesOnForObjectinstance() and turnUpdatesOffForObject-
Instance() callbacks. . Two RTlambassador methods can be used to specify whether per object
instance control signals are generated or suppressed. These methods are (1)
enableAt&ibuteRelevanceAdvisorySwitch() and (2) disableAttributeRelevanceAdvisory-
Switch().

Attribute Scopes

Prior to communicating attribute updates for a subscription with region to a particular object
class, the LRC will (at the federate's discretion) provide the preliminary callback
attributesInScope() announcing that subsequent attribute updates for the specified object instance
with overlapping attributes may be forthcoming. A subsequent attributesOutOfScope() callback
would inform the federate that subsequent attribute updates for the specified object and specified
attribute set would no longer be provided. These signals will be generated or suppressed based
on the "attribute scope advisory switch" that is set by the RTlambassador methods
enableAttributeScopeAdvisorySwitch() and disableAttributeScopeAdvisorySwitch(). Figure 8-5
provides an interaction diagram for these methods.

28 These methods are not shown in the accompanying interaction diagram.
HLA RTI 1.3-Next Generation

8-9

Object Management

user_code || fedanb : rtiamb ;|| various : Misg
Anbassador [RTlanbassadojf RtiLibClasse
enableAttribute$ScopeAdvisorySwitch
attributesinScope
corst
attrilg
teHandleSet&
Received after|object is register¢d
federate is clegr to provide attriqute
disable AttributeScope AdvisorySyitch

Figure 8-5. Scope Interactions

HLA RTI 1.3-Next Generation

8-10

Ownership Management

9. Ownership Management

9.1 Introduction

This chapter introduces the RTlambassador service and FederateAmbassador callback methods
that support ownership management. Chapter 7, Declaration Management, presented declaration
management methods supporting publication and subscription of objects and interactions.
Chapter 8, Object Management, explored methods for registering and updating object instances.

The RTI allows federates to share the responsibility for updating and deleting object instances
with a few restrictions. It is possible for an object instance to be wholly owned by a single
federate. In such a case, the owning federate has responsibility for updating all attributes
associated with the object and for deleting the object instance. It is possible for two or more
federates to share update responsibility for a single object instance. When update responsibility
for an object is shared, each of g]]e participating federates has responsibility for a mutually
exclusive set of object attributes.® Only one federate can have update responsibility for an
individual attribute of an individual object at any given time. In addition, only one federate has
the privilege to delete an object instance at any given time.

9.1.1. Push v. Pull

The ownership management methods provide a facility for exchanging attﬁbute ownership
among federates in a federation execution using a "push” and/or a "pull” model.** A federate can
try to give away responsibility for one or more attributes of an object instance — or push
ownership. Alternatively, a federate can try to acquire responsibility for one or more attributes
of an object instance — or pull ownership. The push model cannot thrust ownership onto an
unwitting federate. Similarly, the pull model cannot usurp ownership.

9.1.2. Privilege to Delete

The special attribute "privilegeToDelete" exists in all object instances (by default). The federate
that "owns" this attribute for an object instance has the right to delete the object. Federates can
exchange the “privilegeToDelete” attribute as they would any other attribute.

2 For a given object instance, some attributes may be unowned — i.e., no federate has update responsibility.
% pysh and pull models can be used in the same federation execution.
HLA RTI 1.3-Next Generation

9-1

Ownership Management

9.2 Ownership Pull

In Chapter 7, Declaration Management, Figure 7-2 introduced four object classes in a small
hierarchy — including the object class Y with attributes {a, b, ¢, d, e, f, g, h, ~}. The
“privilegeToDelete” attribute is shown graphically with a tilde. As mentioned above, multiple
federates may share update responsibility for a given object instance. In Figure 9-1, Federate #1
declares that it can publish attributes {b, e, f, g, h, ~}. Federate #4 declares that it can puplish
attributes {a, c, d, ~}. Each federate implicitly publishes the “privilegeToDelete” attribute.

Federate #1

7 - Publishes Y
oo w/ the followin
Federate #4 Publishes attributes: J

Y w/ the following
attributes: {a, c, d}. ib,e, 1, g h}

Figure 9-1. Shared Update Responsibility

In this particular example, there is no contention for attribute ownership since the two federates
are interested in mutually exclusive attributes. However, only one federate can create a
particular object instance. If Federate #1 creates an instance of Y named "Ypna," then it will
"own" Yapna{b, €, f, g, h, ~} since it has published those attributes for object class Y. The
attributes Yapna{a, c, d} are initially unowned.

If Federate #4 has subscribed to object class Y, it will discover Yapna as soon as it is registered by
Federate #1.%' Federate #4 can attempt to acquire ownership (i.e., update responsibility) of any Y

31 When a federate indicates that it can publish an object class, the privilege to delete is assumed.
%2 Federate #4 need not subscribe to the attributes produced by Federate #1 in order to discover Y aipha-
HLA RTI 1.3-Next Generation

9-2

Ownership Management

attributes for Yapna. Figures 9-2 and 9-3 provide interaction diagrams that illustrate the pull
ownership model for orphaned and obtrusive “pulls” respectively.

Ownership Management
Pull (Orphaned-Attribute)

White Federate Green Federate

EASELEIN FederateAmbassador ‘ Fed. Code I s

m RTIAmbassador I i 1 LRC RTIAmbassador

attributeOwnershipAcquisitionlfAvailalf)e l‘l
i And / Or

attributeOwnershipUnavailab{g 4—‘—

attributeOwnershipAcquisitionNotificatif)

Figure 9-2. Ownership Pull Interaction Diagram — Orphaned Attribute

HLA RTI 1.3-Next Generation
9-3

Ownership Management

Ownership Management
Pull (Intrusive)

White Federate Green Federate

RTI
m RTAmbassador | LR RTlIAmbassador |
attributeOwnershipAcquisition ()
requestAtiributeOwnershipRelease ()

Option

cancelAttributeOwnershipAcquisition () l

confirmAttributeOwnershipAcquisitionCancellation ()

attributeOwnershipReleaseResponse ()

attributeOwnershipAcquisitionNotification () i

Figure 9-3. Ownership Pull Interaction Diagram — Intrusive

9.2.1. Attribute Ownership Acquisition

The RTlambassador method attributeOwnershipAcquisition() attempts to secure ownership of an
attribute whether or not it is currently owned by another federate. As an alternative, the method
attributeOwnershipAcquisitionlfAvailable() attempts to secure attributes that are not owned by
another federate. A call to attributeOwnershipAcquisition() ultimately results in one or more
requestAttributeOwnershipRelease() callback invocations if the requested attributes are owned
by other federates. When attributeOwnershipAcquisitionlfAvailable() is called, any attributes
that are already owned are reported via the attributeOwnershipUnavailable() callback. In order
to request ownership of attributes for a particular object instance, the requesting federate must
construct an attribute handle set. The procedure is outlined in Chapter 7, Declaration
Management.

9.2.2. Attribute Ownership Release

As discussed in the previous paragraph, a call to attributeOwnershipAcquisition() will produce a
requestAttributeOwnershipRelease() callback invocation on any federate that holds a requested
attribute. A federate fielding this callback responds with the RTlambassador method
attributeOwnershipReleaseReponse(). At a minimum, the federate should respond with a null
attribute handle set — indicating that the attributes cannot or will not be released. The federate is
free to give up none, some, or all of the requested attributes. The federate is released from

HLA RTI 1.3-Next Generation

Ownership Management

update and/or delete responsibility of all released attributes once it has called
attributeOwnershipReleaseReponse().

9.3 Ownership Push

Ownership push suggests that a federate owns update responsibility and/or the privilege to delete
for an object instance and wishes to transfer ownership to another federate. The ownership may
be surrendered "unconditionally” or "negotiated.” Unconditional push releases a federate from
attribute update and/or deletion responsibility without any commitment from other federates to
assume these responsibilities. Negotiated push is a formal exchange where a federate retains
responsibility until a new owner is identified and a formal exchange process is completed.
Typical ownership push interactions are presented in Figure 9-4.

Ownership Management

Push
White Federate Green Federate
RTI
negotiatedAttributeOwnershipDivestiture() i
requestAttributeOwnershipAssumption()
Option

cancelNegotiated AttributeOwnershipDivestiture()

attributeOwnershipAcquisition()
attributeOwnershipDivestitureNotification() p g
attributeOwnershipAcquisitionNotification()

Figure 9-4. Ownership Push Interaction Diagram

9.3.1. Unconditional Push

A federate wishing to relieve itself immediately from attribute update responsibility for an object
instance and/or the responsibility of deleting the object instance, can call the RTlambassador
method unconditional AttributeOwnershipDivestiture(). The federate is immediately free from
the attribute responsibilities (including privilegeToDelete if listed) for the specified object
instance.

9.3.2. Negotiated Push

A negotiated push is more involved than an unconditional push and is designed to ensure that
attribute update and object deletion responsibilities are not dropped. The federate wishing to let
go responsibilities calls the RTlambassador method negotiatedAttributeOwnershipDivestiture().
Federates that are capable of publishing any or all of the attributes being given away are notified

HLA RTI 1.3-Next Generation

Ownership Management

via the FederateAmbassador callback method requestAttributeOwnershipAssumption(). A
federate wishing to acquire one or more of the offered attributes makes use of one of the pull
methods — attributeOwnershipAcquisition() or attributeOwnershipAcquisitionlfAvailable().

As federates are found to assume the responsibilities being given away, the federate that initiated
the push receives the callback attributeOwnershipDivestitureNotification() — which informs the
federate that it is no longer responsible for the listed attributes. The federate(s) gaining
responsibility for the attributes is informed of its new responsibility with the callback method
attributeOwnershipAcquisitionNotification().

9.3.3. Complex Exchanges

Ownership exchange can be quite complex. In the push model, several federates may vie for
ownership of offered attributes. The pushing federate may not succeed in giving all the
requested attributes away. The contending federates may not get everything they ask for. A
federate that does not get everything it wants may try to surrender the attributes it did receive. A
federate that fails to get rid of everything it requested can let a negotiated divestiture stand or
issue an unconditional divestiture. Divestiture calls for a specific object instance replace any
previous calls for that instance.

9.4 Supporting Functions
9.4.1. Cancellation

Sometimes a federate reconsiders its decision during an ownership transfer. A federate
attempting to push ownership may decide that there are not any takers or otherwise decides to
retract the push offer. Push cancellation may be invoked by the RTlambassador method
cancelNegotiatedAttributeOwnershipDivestiture().

Similarly, a federate attempting to pull ownership of one or more attributes may wish to cancel
the exchange. The method cancelAttributeOwnershipAcquisition() cancels a pull. It is
acknowledged by the confirmAttributeOwnershipAcquisitionCancellation() callback method.
The methods in Figures 9-3 and 9-4 are available to cancel an in-progress exchange.

9.4.2. Queries

Two mechanisms exist for determining attribute ownership. The queryAttributeOwnership()
method seeks the federate currently responsible for a particular attribute of a particular object
instance. It solicits the informAttributeOwnership() callback on the FederateAmbassador that
delivers the handle of the owning federate.

The RTlambassador method isAttributeOwnedByFederate() returns a Boolean operator
indicating whether the issuing federate owns or does not own the specified attribute for the
specified object instance.

HLA RTI 1.3-Next Generation

9-6

Data Distribution Management

10. Data Distribution Management

10.1 Introduction

This chapter introduces Data Distribution Management (DDM). As discussed in Chapter 7,
Declaration Management, the RTI uses publication and subscription information (declared by
federates participating in a federation) to throttle the data placed on the network. Control signals
issued by the RTI can be used to constrain type registration and instance updates. The RTI
effectively serves as an intelligent switch — matching up producers and consumers of data, based
on declared interests and without knowing details about the data format or content being
transported.

DDM provides a flexible and extensive mechanism for further isolating publication and
subscription interests — effectively extending the sophistication of the RTI's switching
capabilities. In DDM, a federation "routing space" is defined. The routing space is a collection
of "dimensions.” The dimensions are used to define "regions.” Each region is defined in terms
of a set of "extents.” An extent is a bounded range defined across the dimensions of a routing
space. It represents a volume in the multi-dimensional routing space.

This chapter introduces DDM at a conceptual level and goes on to examine supporting
RTIlambassador services and FederateAmbassador callbacks.

10.2 Example Routing Space
10.2.1. A Previous Example Revisited

If all this seems a bit confusing, perhaps an example will help. Chapter 7, Declaration
Management, presented a declaration management example. Figure 7-3 (repeated here as Figure
10-1) illustrates the publication interest of Federate #1 and the subscription interest of Federate
#2. Object class Y is a descendant of object class X (Figure 7-2, not reprinted).

Federate #1 Publishes Y w/
the following attributes:
{b, e, f, g, h}.

Federate #2 Subscribes
to X w/ the following
attributes: {a, b, c, d, e}.

Figure 10-1. Publication and Subscription Intersections

HLA RTI 1.3-Next Generation

10-1

Data Distribution Management

Federate #1 indicates that it is able to publish Y:{b, e, f, g, h}. Federate #2 indicates that it
wishes to subscribe to X:{a, b, ¢, d, e}. The RTI will promote instances of object class Y such
that Federate #2 sees these instances as X instances. Since there is a consumer for the
information produced by class Y, the RTI informs Federate #1 that it should register Y instances.
As suggested in Chapter 8, Object Management, the RTI can provide additional information to
Federate #1 indicating the specific attributes of specific object instances for which a subscription
interest (i.e., a consumer) exists.

10.2.2. A Routing Space

Consider a routing space defined by the three dimensions "longitude,” "latitude," and "altitude."
Figure 10-2 illustrates such a routing space. For the examples in this chapter, this routing space
is indicated with the shorthand notation R{longitude, latitude, and altitude}.

LY.
Federate #13 +
Region "Alpha" .
ol P
P .© N Federate #2's

Figure 10-2. Example Routing Space

Federates can fine-tune their subscription declarations and data updates in terms of regions
within the routing space. For example, Federate #1 might associate the attributes of an object
class Y:{b, e, f, g, h} with the following region:

Raipna{longitude: 44°E - 48°E, latitude: 30°N - 37°N, altitude: 0 - 50,000 ft}

Similarly, Federate #2 might subscribe in X:{a, b, c, d, e} with the region:

HLA RTI 1.3-Next Generation

10-2

Data Distribution Management

Reamma{longitude: 40°E - 46°E, latitude: 34°N - 40°N, altitude: 30,000 ft - 50,000 ft}

The overlap between the regions Raipna and Rgamma is relatively small. In fact, the intersection of
these two regions is:

Raipha n cammaflOngitude: 44°E - 46°E, latitude: 34°N - 37°N, altitude: 30,000 ft - 50,000 ft}

However, since the regions do intersect, the RTI will ensure that the data is communicated from
Federate #1 to Federate #2.

10.3 Defining Routing Spaces and Regions

As suggested in the preceding example, federates associate data with regions. The High Level
Architecture (HLA), on which the RTI is based, maintains a separation between the data and the
code that manipulates the data (i.e., the RTI). DDM introduces a generic means of defining
routing spaces and regions that do not require the RTI to have knowledge about a federation’s
data.

10.3.1. Routing Spaces

A routing space is essentially the problem space. Routing spaces identify all of the dimensions
on which a region migB be defined. The previous example used the routing space R{longitude,
latitude, and altitude}.* The example routing space has three dimensions. All federates in a
federation that elect to use routing spaces must agree upon the dimensions that form the routing
space as well as the worst case upper and lower bounds along each dimension. The FED ﬁﬂﬁ
specifies the routing spaces and the dimensions available to each federate within the federation.

In the sample problem, the federates might have agreed upon a routing space bounded by a
longitude of 40°E to 50°E, a latitude of 30°N to 40°N, and an altitude of 0 to 50,000 feet. The
FED file includes parameters that identify the routing space (by name) and the dimensions (by
name). Beyond tbat federates must know the upper and lower bounds along each dimension in
the routing space.

580

581 :

582 ;; (spaces

583 ;; (space <nane>

584 ;; (di mensi on <name>)
585 ;; .o

586 ;; (di mensi on <name>)
587 ;;)

588 ;; .o

589 ;; (space <nane>

% This is a rather obvious routing space. Some less obvious choices will be discussed subsequently.
3 Note that the FED file may specify multiple routing spaces — all of which are available to federates.

% This is very similar to the requirement that the federates must "know" how to encode and decode attribute values. The range of
possible values for each dimension is specified in the FOM routing space tables.

HLA RTI 1.3-Next Generation

10-3

Data Distribution Management

590 ;; (di mensi on <name>)
591 ;; .o

592 ;; (di mensi on <name>)
593 ;;)

594 ;;)

10.3.2. Extents

An extent is a volume defined by a range (minimum and maximum) along each dimension of a
routing space. For DDM to support arbitrary dimensions, a generic representation scheme is
needed to express extents. The scheme adopted by the RTI is as follows: The fult(ange along a
given dimension is mapped onto the interval [MIN_EXTENT, MAX_EXTENT].* Figure 10-3
illustrates a formula for translating a value "v" on the dimension "D" to a number in the range
[MIN_EXTENT, MAX_EXTENT]. In order to specify a range, two such values must be
mapped — one specifying the minimum value of the range and another specifying the maximum

value of the range.
Federate #1 (from in the example above (paragraph 10.2.2) specified the region:

Raipna{longitude: 44°E - 48°E, latitude: 30°N - 37°N, altitude: 0 - 50,000 ft}

Dimension
DMin

<€ ©

DMax

rd

K<
9

- Nz 3
75 ®

MIN_EXTENT \ MAX_EXTENT

(0%) (100%)

(v - D,,) X (MAX_EXTENT - MIN_EXTENT)
(DMax - DMin)

+ MIN_EXTENT

Figure 10-3. Normalization of a Range in an Extent

10.3.3. Calculation of Extents

The region was specified in terms of one extent containing a range for each dimension. Here, the
extent is expressed in terms of range values on the dimension axis.

Rapha{longitude: 44°E - 48°E, latitude: 30°N - 37°N, altitude: 0 - 50,000 ft}

% The values of MIN_EXTENT and MAX_EXTENT are defined by macros in the RTI header files and should be treated as
implementation-specific.

HLA RTI 1.3-Next Generation
10-4

Data Distribution Management

Each range in the extent must be mapped onto the generic range (i.e., bounded by
MIN_EXTENT and MAX EXTENT) for submittal to the RTI. In order to compute the
mapping, the minimum and maximum values along each dimension must be calculated.

_(4-4)XMA_EXTE-MI _EXTE)
©—4)

alphgagnugmum‘(4&4QX(MA&Z§4EONM'NEXTENIMW EXTEI

al phﬁnuqenimum_ (3O_3QX(MA)SZ)(§T§)N_M ! I_IEXTENIM INEXTE!

[al phgitu(yznimmum: Mi NEXTE NT

alpm)rjgig _miimu +MI _EXTE

_ (37-30X(MAXEXTENMINEXTENT

al : +MINEXTE!
ph@itud_ma)mum (40_30 AL
alpha ., = (0 -0)x (MAX _ EXTENT - MIN _ EXTENT) +MIN _ EXTENT
- (50,000 - 0)
D alpha altitude _ min imum = MIN — EXTENT
alpha _ (50,000 -0) x (MAX _EXTENT —MIN _ EXTENT) +MIN _EXTENT

altitude _maximum — (50’000 _ O)
[alpha = MAX _EXTENT —=MIN _EXTENT + MIN _ EXTENT = MAX _ EXTENT

altitude _ maximum

10.3.4. Creative Dimensions

Federations are free to introduce dimensions that suit the needs of constituent federates. For
example, two candidate dimensions may be Frequency {with enumerated ranges defined as 1, 2,
3, 4, 5} or Military Ranks {with enumerated ranges defined as Private, Corporal, Sergeant,
Sergeant Major, so forth.}. Extents might be defined on each and incorporated into region
definitions. A radio frequency spectrum might serve as a dimension. Federates would define
regions that include a frequency range. Even a discrete, ordinal series might serve as a
dimension.

A dimension could be introduced identifying the "UpdateFrequency” of certain updates. It might
contain such values as "once per second,” "once per 10 seconds,” and "once per 60 seconds.” A
producing federate capable of issuing update information every second could publish the updates
every second to a region including an UpdateFrequency with an extent that covered “once per
second.” Every ten seconds, the federate would publish to a region that included an

HLA RTI 1.3-Next Generation

10-5

Data Distribution Management

UpdateFrequency extent that covered "once per second™ and "once per 10 seconds.” A federate
wishing to receive information every 10 seconds would construct its regions accordingly.f1

10.3.5. Regions and Attributes

The RTI makes no intuitive connections between regions and attributes. For example, an
airplane object class might contain the attributes “longitude,” "latitude,” and "altitude.” The
routing space might contain the dimensions "longitude,” "latitude,” and "altitude.” The RTI does
not make any automatic associations between the class attribute "longitude™ and the routing
space dimension "longitude.” It is entirely up to the producing federate to associate events (e.g.,
object updates, interactions) with regions!

10.3.6. Oddly Shaped Regions

The RTI supports the specification of a rectangle-shaped region. Some simulations are interested
in oddly shaped regions. Complex areas can be defined by collecting multiple extents within a
region. However, use of numerous extents or artificially complex regions may have a negative
impact on performance. A federate may also use the RTI to specify initial thresholds and go on
to perform additional filtering within its simulation.

Figure 10-5 illustrates a cube-shaped region. A sphere appears within the cube. A federate
might subscribe to certain events within this cube-shaped region. All activities outside the cube
are suppressed by the RTI. The federate, however, is only interested in events within the inner
sphere. In this case, the federate must use additional information (e.g., object attribute values,
interaction parameter values) to discern whether received events are applicable or not.

w

> 2r

37 Clearly, some consideration would have to be given as to whether the ten second updates were differential or exhaustive.
Other schemes are also possible.

HLA RTI 1.3-Next Generation

10-6

Data Distribution Management

Figure 10-5. Two-Layer Filtering
10.3.7. Thresholds

The RTLrid file contains threshold values that can cause region specification to be treated as
fuzzy. The description of the RTI implementation class "Region” in Appendix C discusses how
thresholds can effectively extend regions.

10.3.8. Default Routing Space

The RTI provides a "default routing space.” Events and requests that are not associated with a
particular routing space are automatically associated with the default routing space. The RTI
associates an RTI::SpaceHandle (i.e., a numeric representation) with every routing space. The
default routing space will have the value returned by RTI::SpaceHandle().

10.4 Creating Regions

Federates call the RTlambassador method createRegion() to construct a new region on a
specified routing space (see Appendix A, Class RTI::RTlambassador). The routing space must
be declared in the FED file. The createRegion() method returns a pointer to a free-store
allocated instance of the RTI::Region class (see Appendix C, Supporting Types and Classes).
Regions must be deleted with the RTlambassador method deleteRegion().

The following RTI::Region methods allow the federate to get and/or set the minimum and
maximum values of each extent range — one extent at a time:

getRangeLowerBound() getRangeUpperBound()
setRangeLowerBound() setRangeUpperBound()

Functions also exist to identify the routing space with which the region is associated. Once a
region has been modified locally, the changes must be communicated to the RTI. The
RTlambassador method notifyAboutRegionModification() exists for that purpose. Figure 10-6
illustrates the interactions required to create, alter, and delete a region.

HLA RTI 1.3-Next Generation

10-7

Data Distribution Management

Data Distribution Management
Region Creation

White Federate Green Federate
[Fed: Code [Fea Gode

RTI

LRC LRC

RTIAmbassador I RTIAmbassador I

createRegion()

| setRangeLowerBound() | l

| setRangeUpperBound() |

notifyAboutRegionModification()

deleteRegion()

Figure 10-6. Region Methods

10.5 Binding Object Attributes to Regions

Object instance updates and interactions can be tied to regions on the sending federate and
subscriptions can be tied to regions on the receiving federate. Each fedEjate maintains it's own
regions. Federates do not know anything about the regions of their peers.

10.5.1. Attribute Updates and Regions

An "attribute instance™ is a particular attribute of a particular object instance. The FED file
specifies the routing space for each attribute of an object class. A given attribute instance is only
associated with one region at any given time and the region must be specified on the appropriate
routing space.

The RTlambassador method associateRegionForUpdates() ties a set of attributes for a particular
object instance to a specified region. The counterpart method unassociateRegionForUpdates()
removes the association between a region and an object instance. In the event that an attribute

% Receiving federates can use the RTI::AttributeHandleValuePairSet: :getRegion(RTI::Ulong index) method to get the update
region of each attribute as well as the RTI::ParameterHandleValuePairSet::getRegion(void) method to get the update region for
an interaction.

HLA RTI 1.3-Next Generation

10-8

Data Distribution Management

instance is not explicitly bound to a region, the RTI implicitly binds such instances to the default
region on the appropriate routing space.f

For attribute instances that are associated with different regions, multiple calls to
associateRegionForUpdates() are required. As an alternative, the RTlambassador method
registerObjectinstanceWithRegion() allows a federate to specify attribute-to-region mapping for
some or all attributes — i.e., without multiple calls to associateRegionForUpdates().

10.5.2. Attribute Subscriptions and Regions

Associating a region with a subscription is similar to associating a region with updates. The
RTlambassador method subscribeObjectClassAttributesWithRegion() allows a federate to
associate a set of attributes with a region for a given object class. The call is similar to the
declaration management call subscribeObjectClassAttributes(), but with a few important
changes. Whereas repeated calls to subscribeObjectClassAttributes() replaced prior calls,
multiple calls to subscribeObjectClassAttributesWithRegion() accrue — with the caveat that
individual attributes can only be associated with one region and that region will be the region
most recently spﬁified. The method unsubscribeObjectClassWithRegion() removes interest in
certain attributes.

10.5.3. Requesting Updates

The RTlambassador method requestClassAttributeVValueUpdateWithRegion() solicits an attribute
update the same way as an requestClassAttributeVValueUpdate(), but associates the request with a
region. It effectively solicits updates for the named attributes of all objects of a given class that
are associated with a region that intersects the identified region. Figures 10-7 through 10-9
illustrate the methods for managing attributes.

% Recall, the default region for any given routing space, includes the entire routing space. Since the FED file specifies the
appropriate routing space per object attribute, the RTI knows which routing space and what default region to use.

%0 |t's tempting to expect this function to remove the association with a specific region in favor of a default region. This is not the
case. Interest in the specified attributes is abandoned all together.

HLA RTI 1.3-Next Generation

10-9

Data Distribution Management

Data Distribution Managemen
Attributes (1)

'White Fedarate

|

I
1
[

createRegion()

setRan geLowerBound() C113
G113

setRan geUpperBound() -
4

notifyA boutRegionModificaion() f

w A62

3
\
1
\
1
1
Al

)>I
o

createRegion()

|
Cc1i3 } setRangeLowerBound()
I

C113 setRangeUpperBound()
I

AB4 notifyAbautRegionModificaiion()

]
i 1
o A22 ! }
publishObjectClass() |)
: A6.13
B2 ! J | subscibeObjectClassAttributeswithRegion()
- I 1
startRegistrationForObjectass() 4+ 1
! I
Daa Distibuion Mgt Side 13 } Jomll :

Figure 10-7. DDM Attributes (Part 1 of 3)

Data Distribution Managemen

Attributes (2)
1 ifend:

'White Faderate
i e |
. Te——

Al
enableAttri bute Relevance AdvisorySwitch()

&

78
enableAttribute ScopeAdvisorySwitch()

65

A
registerObj ea | nstancewithRegion()

B34
discoverObjectinstance()

|
]
|
B.3.14
)
]
|
|
|
|

tumUpdatesOnForObjectl nstance() —

B31
attri buteslnScope()

A67

|
|
|
I
|
\

A.
:
I
I
I
)
I
)
I
I
I
3
| requestClassAtributeVal ueUpdatewih Region)
I
I

35
provideAttributeValueUpdate() i‘—y—l

312

A.
updateAtributeValues()

1
1
I
1

1

1

1

I

\

B37
reflectAttributeVal ues()

1

]

! 1

Da Distituion Mgt Side 14 ‘Jmm.l 1
1

Figure 10-8. DDM Attributes (Part 2 of 3)

HLA RTI 1.3-Next Generation

10-10

Data Distribution Management

Data Distribution Management
Attributes (3)

White Federate | 1ol e
Fisl Coli e ——— Fel. o m
B] MR TEnasde

unsubscribeObjectClassWithRegion ()

B.25 l

stopRegistrationForObjectClass ()
B.3.12 ! l [
turnUpdatesOffForObjectinstance () i]
I

4 ! 1

1 B.3.10 -
removeObjectinstance ()

deleteObjectinstance () AS

A6.3
deleteRegion ()] /

Y A63
I i deleteRegion ()

Figure 10-9. DDM Attributes (Part 3 of 3)
10.5.4. Object Ownership and Regions

When federates exchange ownership of attribute instances, the region associations for the
attribute instances will not be maintained for the federate acquiring ownership.

10.5.5. Time and Regions

As with the declaration management services, methods that associate regions with attribute
instances or with subscriptions take place immediately and are not subject to time management
(i.e., such specifications cannot be tied to a future time).

10.6 Binding Interactions to Regions

Interactions may be bound to regions; however, such bindings are "all or nothing." It is not
possible to associate specific interaction parameters with different regions. DDM methods for
interactions are presented in Figure 10-10. The RTlambassador method
sendInteractionWithRegion() allows a producing federate to tie an interaction to a region. The
methods subscribelnteractionClassWithRegion() and unsubscribelnteractionClassWithRegion()
can be used to tie a region to an interaction subscription (i.e., on the interaction recipient side).

HLA RTI 1.3-Next Generation
10-11

Data Distribution Management

Data Distribution Management
Interactions

White Federate Green Federate
Fed. Code [‘Fed. SLEENN FederateAmbassador
! RTI \\
LRC RTIAmbassador I '] LRC RTIAmbassador I
subscribelnteractionClassWithRegion() l
4 turninteractionsOn()

l sendInteractionWithRegion()

receivelnteraction() n

unsubscribelnteractionClassWithRegion()

l - 4 turninteractionsOff()

Figure 10-10. Interactions and DDM

HLA RTI 1.3-Next Generation

10-12

Management Object Model

11. Management Object Model

11.1 Introduction to the Management Object Model

The Management Object Model (MOM) consists of a number of object and interaction classes that must
be present in the encoded FOM hierarchy of any FED file intended for use with the RTI. These classes
constitute a mechanism by which federates may obtain information about the internal and external
characteristics of the LRCs comprising the federation. Typically, this information will be combined by
a “manager” federate and used to monitor and tune the operation of an active federation.

The RTI 1.3-NG software implements the MOM hierarchy described in HLA Interface Specification
version 1.3. The HLA 1.3 MOM consists of the following primary components.

* A Manager.Federate object class, which is instantiated exactly once per federate by the
federate’s LRC.

» A Manager.Federation object class, which is instantiated exactly once per federation execution
by the RTI.

* A Manager.Federate.Adjust hierarchy of interactions, which may be sent by federates to effect
changes in the internal and external characteristics of the LRCs comprising the federation.

* A Manager.Federate.Request hierarchy of interactions, which may be sent by federates to solicit
reports on the internal and external characteristics of the LRCs comprising the federation.

* A Manager.Federate.Report hierarchy of interactions, which are sent by LRCs in response to
information requests initiated by federates.

* A Manager.Federate.Service hierarchy of interactions, which may be sent by federates to invoke
services and callbacks on remote LRCs and federates, respectively.

A federate’s LRC will automatically publish and subscribe various classes on behalf of the federate.
The publications and subscriptions are independent of any federate-level publications and subscriptions.
A federate must publish the appropriate interaction classes before sending out interaction instances, and
may subscribe to MOM object and interaction classes to receive reflections of MOM events.

All parameters and attributes of MOM classes are represented as null-terminated strings. Numeric
values are encoded as strings suitable for conversion using at ol () or at of (). Lists of values and
composite types (i.e., C++ structs) are typically encoded as comma-delimited sequences containing the
elements comprising the list or composite entity. Federation Time parameters in the MOM interactions
sent by the user should be encoded using the RTI : : FedTi nme. encode() method; however, for
received interactions, the Federation Time parameters are encoded with
RTI::FedTime.getPrintableString(). See the descriptions of specific MOM attributes and parameters for
more details.

HLA RTI 1.3-Next Generation

11-1

Management Object Model

DESCRIPTION
Interactions of this class may be generated by a federate to

cause an instance-attribute to become owned or unowned

11.2 Interactions
\ Manager
SYNOPSIS
(cl ass Manager reliable receive
(class ...)

)

DESCRIPTION
This class is the root of the MOM interaction class
hierarchy. It has no parameters and is not intended to be
directly subscribed or instantiated.

by a specified federate, independent of RTI ownership
management services. This may result in the instance-
attribute being lost to the federation. However, if the
attribute is owned by another federate, any attempt to
assume ownership will fail. The attribute must first be set
to unowned.

The object instance affected by this interaction must be
known by the federate for which ownership is being
toggled. The class-attribute corresponding to the affected
instance-attribute need not be published by the federate.

Manager.Federate

The affected federate will receive no indication that the
ownership status of the instance-attribute has been

SYNOPSIS

(class Federate reliable receive

(paraneter Federate)

(class ...

)
)

DESCRIPTION

This class is the root of the hierarchy of MOM interactions
that are generated by or intended for an entity associated
with a specific federate handle (either the federate itself or
the LRC associated with the federate.) In RTI 1.3, all
interactions fall into this category. This class is not
intended to be directly subscribed or instantiated.

In the Adjust, Request, and Service sub-hierarchies, the
federate-handle parameter denotes the intended recipient of
the interaction. In the Report sub-hierarchy, the federate-
handle parameter denotes the sender of the interaction.

PARAMETERS
Federate

the federate handle (as returned by

j oi nFeder at i onExecut i on()) of the federate or
LRC sender or recipient of the interaction

modified.

This interaction is intended to be used to recover instance-
attributes lost to a federation during a crash.

All three parameters must be present for an instance of this
interaction to be valid. If one or more parameters are
missing, the interaction has no effect.

PARAMETERS
ObjectInstance
the instance name of the object instance for which to
modify the state of the instance-attribute

Attribute
an attribute handle (taken in context of the actual class
of the object instance) representing the instance-
attribute whose state is to be modified

AttributeState

a string equal to “owned” or “unowned” (case-
insensitive), indicating the new state for the instance-
attribute at the receiving LRC

\ Manager.Federate.Adjust.SetServiceReporting \

Manager.Federate.Adjust

‘ SYNOPSIS

(class SetServiceReporting reliable receive

SYNOPSIS

(class Adjust reliable receive
(class ...
)
)
DESCRIPTION
This class is the root of the hierarchy of MOM interaction
classes used to modify internal characteristics of an LRC.
This class should not be directly subscribed or instantiated.
Subclasses of this class are intended to be generated by
federates and reacted to by LRCs. The Federate parameter
inherited from Manager.Federate specifies the recipient
LRC of an interaction instance.

(paraneter ReportingState)

)

DESCRIPTION
Interactions of this class may be generated by a federate to
toggle reporting of service calls by a specified LRC. When
service reporting is enabled at an LRC, it will send a
Manager.Federate.Report.ReportServicelnvocation
interaction for each federate- or RTl-initiated service call.

By default, service reporting is turned off for all LRCs.

It is illegal for a federate to have service reporting enabled
and to be subscribed to the
Manager.Federate.Reporting.ReportServicelnvocation
interaction, an Alert will be sent.

Manager.Federate.Adjust.ModifyAttributeState

PARAMETERS

SYNOPSIS
(class ModifyAttributeState reliable receive
(paraneter Objectlnstance)
(paraneter Attribute)
(paraneter AttributeState)

)

HLA RTI 1.3-Next Generation

ReportingState
a string equal to “true” or “false” (case-insensitive),
indicating the new toggle state of service reporting at
the receiving LRC

11-2

Management Object Model

‘ Manager.Federate.Adjust.SetExceptionLogging ‘ classes generated by LRCs to report various characteristics

of LRC and federate state. This class should not be directly

SYNOPSIS subscribed or instantiated. Subclasses of this class are

(cl ass Set ExceptionlLogging reliable receive indented to be subscribed by federates and generated by

(parameter Loggi ngState) LRCs. The Federate parameter inherited from

) Manager.Federate specifies the LRC sender of an
DESCRIPTION interaction instance.

Interactions of this class may be generated by a federate to
toggle logging of exceptions by a specified LRC. Turning
logging off stops all exceptions from being written to the
federate log file. By default, the log file is written to the
federate’s current directory, in a file named

\ Manager.Federate.Report.Alert

<File Prefix>-<Fed Name>

where SYNOPSIS
I Alert reliabl i
<File Prefix> is the file prefix specified by the (c (a;:r aneetrer rA|e e'rat S:\,éreicte;)ve
ExceptionLoggingFilePrefix RID parameter (default (parameter AlertDescription)
value: “RtiMomExceptionLoggingFile”) (parameter AlertlD)

)

DESCRIPTION
Interactions of this class are generated by an LRC

<Fed Name> is the federate’s name as specified in the
call to joinFederationExecution().

Each exception entry lists the date and time that the whenever it throws an exception.
exception is logged, followed by the exception name and its
description. PARAMETERS

AlertSeverity
A text string representing the severity of the exception
PARAMETERS thrown by the LRC; it will be one of the following:
LoggingState .
a string equal to “true” or “false” (case-sensitive),
indicating the new toggle state of logging at the

By default, logging is turned off for all LRCs.

“RTI exception”
e “RTlinternal error”

receiving LRC e “Federate internal error”
e “Warning” (not supported)
\ Manager.Federate.Adjust.SetTiming \ + “Diagnostic” (not supported)

AlertDescription

SYNOPSIS . . S
(class SetTim ng reliable receive the text associated with the e_xceptlon,, this |n0|uQes
(paramet er Report Peri od) the type-name of the exception class and a string
) description of the reason for the exception
DESCRIPTION AlertID
Interactions of this class may be generated by a federate to an integer indicating the alert count; this count is
set the frequency at which a specified LRC will generate incremented after each Alert is sent
updates for the Manager.Federate object representing its - —
local federate. A value of zero may be specified to disable Manager.Federate.Report.ReportinteractionPublication
updates by the specified LRC.
- SYNOPSIS
By default, an LRC does not generate periodic updates for (class ReportlnteractionPublication reliable
its local Manager.Federate object. recei ve
(paraneter |nteractionC assList)
PARAMETERS
ReportPeriod DESCRIPTION
a positive integer value representing a time (in Interactions of this class are generated by an LRC in
seconds) used to set the update period, or zero to response to
disable updates Manager.Federate.Request.RequestPublications

interactions. This interaction reports only the interaction
‘ classes published by the federate itself (i.e., it does not
include interaction classes published by the LRC on behalf
of the federate.)

\ Manager.Federate.Report

SYNOPSIS

(class Report reliable receive

y PARAMETERS

DESCRIPTION Imerzcggrn?r:fztllis:nited list of interaction class handles
This class is the root of the hierarchy of MOM interaction

HLA RTI 1.3-Next Generation

11-3

being published by the reporting federate (null if no
interaction classes were published).

Manager.Federate.Report.ReportinteractionsReceived \

SYNOPSIS

(class Reportlnteracti onsReceived reliable receive
(paraneter TransportationType)
(paraneter InteractionCounts)

)

DESCRIPTION

Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestinteractionsReceived
interactions. Two reports will be generated in response to
such a request: one for best-effort transport and one for
reliable transport. Each report details the interactions that
have been delivered to the federate, tabulated according to
the actual classes of the interactions (which is not
necessarily the same as the classes by which the
interactions were actually presented to the federate.) These
counts do not include MOM interactions that were not
delivered to the federate, nor do they include interactions
used for internal RTI communications.

PARAMETERS
TransportationType
a string equal to “Reliable” or “Best Effort” depending
on the transportation service category being reported

InteractionCounts
a comma-delimited list of pairs of the form
“<class>/<count>" where class is an interaction class
handle and count is the number of interactions that
have been delivered to the federate of that class; only
classes that have a non-zero count are listed (null if no
interactions were received)

\ Manager.Federate.Report.ReportinteractionsSent \

SYNOPSIS

(class ReportlnteractionsSent reliable receive
(paraneter Transportati onType)
(paraneter |nteractionCounts)

)

DESCRIPTION

Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestinteractionsSent
interactions. Two reports will be generated in response to
such a request: one for best-effort transport and one for
reliable transport. Each report details the interactions that
have been sent by the federate, tabulated according to the
classes of the interactions. These counts do not include
MOM interactions that sent by the LRC on behalf of the
federate, nor do they include interactions used for internal
RTI communications.

PARAMETERS
TransportationType
a string equal to “Reliable” or “Best Effort” depending
on the transportation service category being reported

HLA RTI 1.3-Next Generation

Management Object Model

InteractionCounts
a comma-delimited list of pairs of the form
“<class>/<count>" where class is an interaction class
handle and count is the number of interactions that
have been sent by the federate of that class; only
classes that have a non-zero count are listed (null if no
interactions were sent)

Manager.Federate.Report.ReportinteractionSubscripti
on

SYNOPSIS
(class ReportlnteractionSubscription reliable
receive
(paraneter |nteractionC assList)

)

DESCRIPTION

Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestSubscriptions
interactions. This interaction reports only the interaction
classes subscribed by the federate itself (i.e., it does not
include interaction classes subscribed by the LRC on behalf
of the federate.)

PARAMETERS
InteractionClassList
a comma-delimited list of interaction class handles
being subscribed by the reporting federate (null if no
interaction classes were subscribed)

\ Manager.Federate.Report.ReportObjectinformation

SYNOPSIS
(class ReportObjectlnformation reliable receive
(paraneter Objectlnstance)
(paranmeter OwmnedAttributelist)
(paraneter Regi steredd ass)
(paranmeter KnownCl ass)

)

DESCRIPTION
Interactions of this class are generated by an LRC in
response to

Manager.Federate.Request.RequestObjectinformation
interactions.

PARAMETERS
Objectlnstance
the object name corresponding to the instance subject
of the report

OwnedAttributeList
a comma-delimited list of attribute handles (in the
context of the actual object class of the instance)
representing any instance-attributes of the object
owned by the reporting federate (null if the object
instance is invalid)

RegisteredClass
the class handle of the actual (registered) object class
of the object instance (null if the object instance is
invalid)

11-4

Management Object Model

KnownClass PARAMETERS
the class handle of the object class by which the ObjectCounts
reporting federate has discovered the object, or the a comma-delimited list of pairs of the form
actual class if the federate owns the object (null if the “<class>/<count>”" where class is an object class
object instance is invalid) handle and count is the number of instances of the

Manager.Federate.Report.ReportObjectPublication \ class for which the reporting federate holds the

privilege to delete (null if no objects are owned)

SYNOPSIS
(class ReportCbjectPublication reliable receive .
(parameter Nunber Of Ol asses) \ Manager.Federate.Report.ReportObjectsReflected \
(paraneter ObjectC ass)
(paranmeter AttributeList) SYNOPSIS
(class ReportObjectsReflected reliable receive
DESCRIPTION (paranmeter Object Counts)
Interactions of this class are generated by an LRC in)
response to DESCRIPTION
Manager.Federate.Request.RequestPublications Interactions of this class are generated by an LRC in
interactions. This interaction reports only the object classes response to
published by the federate itself (i.e., it does not include Manager.Federate.Request.RequestObjectsReflected
object classes published by the LRC on behalf of the interactions. This report indicates the number of reflections
federate.) that have been delivered to the reporting federate by object
Each publication request will result in a separate ?r!ztiesfna(lllf” |tbydoesthr;0t "|]_C|?|;g§ reflect|ol?s prn(iﬁ(letsispelg

ReportObjectPublication interaction for each object class
published by the federate. The NumberOfClasses
parameter — which is the same for each interaction
comprising the response — indicates the total number of
reports sent in response.

reflect Attributeval ues() callbacks are made in
response to a single update (e.g., if different attributes are
sent reliably vs. best effort), they will be tallied
individually.

The report is tabulated according to the actual (registered)

PARAMETERS object class of the object instances that were subjects of
NumberOfClasses reflections, which may not be the same as the object classes
an integer indicating the total number of object- by which they are known to the federate.
publication reports in the sequence this report is part
of PARAMETERS
ObjectCounts

ObjectClass
the object class handle of the object class published by
the reporting federate

a comma-delimited list of pairs of the form
“<class>/<count>" where class is an object class
handle and count is the number of reflections

AttributeList delivered to the federate for instances of the class;
the attribute handles of the class-attributes of the only non-zero counts are listed (null if no objects were
specified object class published by the reporting reflected)

federate (null if no object classes were published)

Manager.Federate.Report.ReportObjectsOwned \

SYNOPSIS

(cl ass ReportObjectsOmned reliable receive
(paraneter Object Counts)
)

DESCRIPTION

Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestObjectsOwned
interactions. An object instance is considered owned by the
reporting federate if and only if the federate owns the
privilegeToDelete instance-attribute for the object. Objects
owned by the LRC on behalf of the federate (e.g., the
Manager.Federate object instance corresponding to the
federate) are not included in the count.

The report is tabulated according to the actual (registered)
object class of the object instances, which may not be the
same as the object classes by which they are known to the
federate.

HLA RTI 1.3-Next Generation

11-5

\ Manager.Federate.Report.ReportObjectSubscription \

SYNOPSIS
(cl ass Report Obj ect Subscription reliable receive
(paraneter Nunmber O Cl asses)
(paraneter ObjectC ass)
(paraneter Attributelist)
(paraneter Active)

)

DESCRIPTION

Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestSubscriptions
interactions. This interaction reports only the interaction
classes subscribed by the federate itself (i.e., it does not
include interaction classes subscribed by the LRC on behalf
of the federate.)

Each subscription request will result in a separate
ReportObjectSubscription interaction for each object class
subscribed by the federate. ~ The NumberOfClasses
parameter — which is the same for each interaction
comprising the response — indicates the total number of
reports sent in response.

PARAMETERS
NumberOfClasses
an integer indicating the total number of object-
publication reports in the sequence this report is part
of

ObjectClass
the object class handle of the object class published by
the reporting federate
AttributeList
the attribute handles of the class-attributes of the
specified object class published by the reporting
federate (null if no object classes were subscribed)
Active

a string equal to “True” or “False”, depending on the
type of the subscription

Manager.Federate.Report.ReportObjectsUpdated

SYNOPSIS
(cl ass ReportCbjectsUpdated reliable receive
(paranmeter Object Counts)

DESCRIPTION
Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestObjectsUpdated
interactions. This report indicates the number of object
instances for which the federate owns at least one instance-
attribute.

The report is tabulated according to the actual (registered)
object class of the object instances that the federate has
updated. This may differ from the object classes by which
the instances are actually known to the federate.

PARAMETERS
ObjectCounts

a comma-delimited list of pairs of the form

HLA RTI 1.3-Next Generation

11-6

Management Object Model

“<class>/<count>" where class is an object class
handle and count is the number of updates initiated by
the federate for instances of the class; only non-zero
counts are listed (null if no objects were updated)

\Manager.Federate.Report.ReportReerctionsReceived \

SYNOPSIS

(class ReportRefl ectionsReceived reliable receive
(paraneter Transportati onType)
(paraneter ReflectCounts)

)

DESCRIPTION

Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestReflectionsReceived
interactions. Two reports will be generated in response to
such a request: one for best-effort transport and one for
reliable transport. Each report indicates the number of
reflections that have been delivered to the reporting
federate by object class (i.e., it does not include reflections
processed internally by the LRC.) If multiple
reflect Attributeval ues() callbacks are made in
response to a single update (e.g., if different attributes are
sent reliably vs. best effort), they will be tallied
individually.

The report is tabulated according to the actual (registered)
object class of the object instances that were subjects of

reflections, which may not be the same as the object classes
by which they are known to the federate.

PARAMETERS
TransportationType
a string equal to “Reliable” or “Best Effort” depending
on the transportation service category being reported

ReflectCounts
a comma-delimited list of pairs of the form
“<class>/<count>" where class is an object class
handle and count is the number of reflections that have
been delivered to the federate for instances of the
class; only classes that have non-zero counts are listed
(null if no reflections were received)

\ Manager.Federate.Report.ReportServicelnvocation

SYNOPSIS
(cl ass ReportServicelnvocation reliable receive

(paraneter Service)
(paraneter Initiator)
(paraneter Successlndicator)
(paraneter SuppliedArgunent 1)
(paraneter SuppliedAr gunent 2)
(paranet er SuppliedAr gunent 3)
(paraneter SuppliedArgunent 4)
(paranet er SuppliedArgunment 5)
(paranet er ReturnedAr gunent)
(paranmet er ExceptionDescription)
(paranmeter Exceptionl D)

)

DESCRIPTION
If service logging is enabled for an LRC, the LRC will
generate an interaction of this class for every RTI- and
federate-ambassador service invocation made by/to the
local federate. The string representation of the various
types of arguments is as follows:

Type Representation \
integers and longs string suitable for conversion using
atol ()
strings the string value, passed as-is
RTI::FedTime The string returned by
RTI::FedTime.getPrintableString()
RTI::Boolean “True” or “False”
RTI::EventRetractionHandle integers suitable for conversion

using at ol (), separated by
commas, representing the serial
number and sending federate,
respectively

RTI:: AttributeHandleSet, comma-delimited list of integers
RTI::AttributeHandleValuePairSet, suitable for conversion using
RTI::ParameterHandleValuePairSet at ol () (attribute/parameter

values are not represented)
RTI::Region The memory address of the region

It is illegal for a federate to have service reporting enabled
and to be subscribed to the
Manager.Federate.Report.ReportServicelnvocation
interaction. If a federate has service reporting enabled and
attempts to subscribe to the
Manager.Federate.Report.ReportServicelnvocation
interaction, a FederateLoggingServiceCalls exception is
thrown

PARAMETERS
Service

the name of the C++ method implementing the service

Initiator
a string, “FED” or “RTI”, indicating an RTI- or
federate-ambassador service, respectively

SuccessIndicator

a string, “True” or “False” indicating whether the
service completed successfully

SuppliedArgumentl
a string representation of the first argument to the
service method (null if the service has no first
argument)

HLA RTI 1.3-Next Generation

11-7

Management Object Model

SuppliedArgument?2
a string representation of the second argument to the
service method (null if the service has no second
argument)

SuppliedArgument3
a string representation of the third argument to the
service method (null if the service has no third
argument)

SuppliedArgument4
a string representation of the fourth argument to the
service method (null if the service has no fourth
argument)

SuppliedArgument5
a string representation of the fifth argument to the
service method (null if the service has no fifth
argument)

ReturnedArgument
a string representation of the return value of the
service method (null if the service has a void return
argument or if Successlndicator is false)

ExceptionDescription
the text associated with the exception thrown (null if
SuccesslIndicator is true)

ExceptionID

A string containing a zero (null if Successindicator is
true)

\ Manager.Federate.Report.ReportUpdatesSent

SYNOPSIS

(cl ass ReportUpdatesSent reliable receive
(paraneter TransportationType)
(paranet er Updat eCount s)

)

DESCRIPTION

Interactions of this class are generated by an LRC in
response to
Manager.Federate.Request.RequestUpdatesSent
interactions. Two reports will be generated in response to
such a request: one for best-effort transport and one for
reliable transport. Each report indicates the number of
updates that have been initiated by the reporting federate by
object class (i.e., it does not include updates sent by the
LRC for internal RTI needs.) If multiple physical updates
result from a single updat eAt t ri but eval ues() service
invocation (e.g., if different attributes are sent reliably vs.
best effort), they will be tallied individually.

The report is tabulated according to the actual (registered)
object class of the object instances that were subjects of
updates, which may not be the same as the object classes by
which they are known to the federate.

PARAMETERS

TransportationType
a string equal to “Reliable” or “Best Effort” depending
on the transportation service category being reported

UpdateCounts
a comma-delimited list of pairs of the form
“<class>/<count>" where class is an object class

handle and count is the number of updates that have
been initiated by the federate for instances of the class;
only classes that have non-zero counts are listed (null
if no updates were sent)

Management Object Model

\ Manager.Federate.Request \

Manager.Federate.Request.RequestObjectsOwned

SYNOPSIS

(class Request reliable receive

)

DESCRIPTION
This class is the root of the hierarchy of MOM interaction
classes generated by federates in order to solicit reports of
various characteristics of LRC and federate state. This class
should not be directly subscribed or instantiated. Subclasses of
this class are indented to be generated by federates and reacted
to by LRCs. The Federate parameter inherited from
Manager.Federate specifies the LRC recipient of an interaction
instance

Manager.Federate.Request.RequestinteractionsReceived \

SYNOPSIS

(class RequestlInteracti onsReceived reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit Manager.Federate.Report.ReportinteractionsReceived
interactions from an LRC. Two instances of this report will be
sent in response: one for best-effort transport and one for
reliable transport.

Manager.Federate.Request.RequestinteractionsSent \

SYNOPSIS

(class RequestlInteracti onsSent reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit Manager.Federate.Report.ReportinteractionsSent
interactions from an LRC. Two instances of this report will be
sent in response: one for best-effort transport and one for
reliable transport.

Manager.Federate.Request.RequestObjectinformation \

SYNOPSIS

(cl ass Request Obj ectInformation reliable receive
(paraneter Objectlnstance)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit a Manager.Federate.Report.ReportObjectinformation
report from an LRC. If the object instance is not known by the
target federate, a ReportObjectinformation is sent with empty
attributes.

PARAMETERS
ObjectInstance

the name of the object instance for which a report is
solicited

HLA RTI 1.3-Next Generation

11-8

SYNOPSIS

(cl ass Request Cbj ect sOmned reliabl e receive)
DESCRIPTION
Interactions of this class may be generated by a federate to

solicit a Manager.Federate.Report.ReportObjectsOwned report
froman LRC.

Manager.Federate.Request.RequestObjectsReflected

SYNOPSIS

(cl ass Request Obj ectsRefl ected reliable receive)
DESCRIPTION
Interactions of this class may be generated by a federate to

solicit a Manager.Federate.Report.ReportObjectsReflected
report from an LRC.

Manager.Federate.Request.RequestObjectsUpdated

SYNOPSIS

(cl ass Request Obj ect sUpdated reliable receive)
DESCRIPTION
Interactions of this class may be generated by a federate to

solicit a Manager.Federate.Report.ReportObjectsUpdated report
from an LRC.

Manager.Federate.Request.RequestPublications

SYNOPSIS

(class RequestPublications reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit Manager.Federate.Report.ReportinteractionPublication
and Manager.Federate.Report.ReportObjectPublication reports
from an LRC. Such a request will result in a single report of the
former type, and a separate report of the later type for each
object class published by the respondent.

Manager.Federate.Request.RequestReflectionsReceived

SYNOPSIS

(class RequestRefl ecti onsReceived reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit Manager.Federate.Report.ReportReflectionsReceived
interactions from an LRC. Two instances of this report will be
sent in response: one for best-effort transport and one for
reliable transport.

\ Manager.Federate.Request.RequestSubscriptions

SYNOPSIS

(cl ass Request Subscriptions reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit Manager.Federate.Report.ReportinteractionSubscription
and Manager.Federate.Report.ReportObjectSubscription reports
from an LRC. Such a request will result in a single report of the
former type, and a separate report of the later type for each
object class published by the respondent.

\ Manager.Federate.Request.RequestUpdatesSent

SYNOPSIS

(cl ass Request UpdatesSent reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
solicit Manager.Federate.Report.ReportUpdatesSent
interactions from an LRC. Two instances of this report will be
sent in response: one for best-effort transport and one for
reliable transport.

\ Manager.Federate.Service

SYNOPSIS

(class Service reliable receive

)

DESCRIPTION

This class is the root of the hierarchy of MOM interaction
classes generated by federates in order to invoke RTI
ambassador services on remote LRCs. This class should not be
directly subscribed or instantiated. Subclasses of this class are
intended to be generated by federates and reacted to by LRCs.
The Federate parameter inherited from Manager.Federate
specifies the LRC recipient of an interaction instance.

A service invocation made via a subclass of the Service
interaction class is the same as one made using the local API
interface, except that service-call reporting is not done for
remote invocations. If an exception occurs as a result of a
remote invocation, an Alert report is sent.

Instances of subclasses of the Service interaction must include
values for all parameters defined for the interaction class.
Incomplete interactions will be discarded upon receipt; an Alert
report will be sent if at least the Federate parameter was
provided.

\ Manager.Federate.Service.ChangeAttributeOrderType

SYNOPSIS

(class ChangeAttributeOrderType reliable receive
(paraneter Objectlnstance)
(paraneter Attributelist)
(paraneter OrderingType)

)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the changeAttributeQOrder Type() service on a
remote LRC.

HLA RTI 1.3-Next Generation

11-9

Migration Document

PARAMETERS
ObjectInstance
the name of the object instance to affected by the service
invocation
AttributeList
a comma-delimited list of string-encoded integers suitable
for conversion using at ol ()

OrderingType

the name of the ordering service, either “receive” or
“timestamp” (case insensitive)

Manager.Federate.Service.ChangeAttributeTransportationType

SYNOPSIS
(class ChangeAttributeTransportationType reliable
receive
(paraneter Objectlnstance)
(parameter AttributeList)
(paraneter TransportationType)
)
DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the changeAttributeTransportationType()
service on a remote LRC.

PARAMETERS
ObjectInstance
the name of the object instance to be affected by the service
invocation
AttributeList
a comma-delimited list of string-encoded integers suitable
for conversion using at ol ()

TransportationType
the name of the transportation service, either “best_effort”
or "reliable” (case insensitive)

Manager.Federate.Service.ChangelnteractionOrderType

SYNOPSIS

(cl ass Changel nteracti onOrder Type reliable receive
(paraneter |nteractionC ass)
(paraneter OrderingType)
)
DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the changel nteracti onOr der Type() service on a
remote LRC.

PARAMETERS
InteractionClass
a string-encoded integer, suitable for conversion using
at ol (), representing an interaction class handle.
OrderingType
the name of the ordering service, either “receive” or
“timestamp” (case insensitive)

Manager.Federate.Service.ChangelnteractionTransportionType

SYNOPSIS
(cl ass Changel nteractionTransportati onType reliable
receive
(paraneter |nteractionC ass)
(paraneter Transportati onType)

)
DESCRIPTION
Interactions of this class may be generated by a federate to

invoke the changel nteractionTransportationType()
service on a remote LRC.

PARAMETERS
InteractionClass
a string-encoded integer, suitable for conversion using
at ol (), representing an interaction class handle

TransportationType
the name of the transportation service, either “best_effort”
or "reliable” (case insensitive)

Manager.Federate.Service.DeleteObjectinstance

SYNOPSIS
(class Del eteCbj ectlnstance reliable receive
(paraneter Objectlnstance)
(paraneter FederationTi ne)
(paraneter Tag)
)
DESCRIPTION

Interactions of this class may be generated by a federate to

invoke the del et eQbj ect I nst ance() service on a remote
LRC.

PARAMETERS
ObjectInstance
the name of the object instance to be affected by the service
invocation
FederationTime
federation time parameters are encoded using
RTI : : FedTi me. encode() method

the

Tag
a string corresponding to the user-specified field for the
service invocation

Manager.Federate.Service.DisableAsynchronousDelivery

SYNOPSIS

(cl ass Di sabl eAsynchronousDel i very reliable receive)
DESCRIPTION

Interactions of this class may be generated by a federate to

invoke the di sabl eAsynchronousDel i very() service on a
remote LRC.

\ Manager.Federate.Service.DisableTimeConstrained

SYNOPSIS

(class Di sabl eTi mreConstrai ned reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to

HLA RTI 1.3-Next Generation

11-10

Migration Document

invoke the di sabl eTi meConst r ani ed() service on a remote
LRC.

Manager.Federate.Service.DisableTimeRegulation

SYNOPSIS

(class Disabl eTi reRegul ation reliable receive)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the di sabl eTi neRegul ati on() service on a remote
LRC.

Manager.Federate.Service.EnableAsynchronousDelivery

SYNOPSIS

(cl ass Enabl eAsynchronousDel i very reliable receive)
DESCRIPTION

Interactions of this class may be generated by a federate to

invoke the enabl eAsynchronousDel i very() service on a
remote LRC.

Manager.Federate.Service.EnableTimeConstrained

SYNOPSIS

(cl ass Enabl eTi meConstrai ned reliable receive)
DESCRIPTION

Interactions of this class may be generated by a federate to

invoke the enabl eTi meConst r ai ned() service on a remote
LRC.

Manager.Federate.Service.EnableTimeRegulation

SYNOPSIS

(cl ass Enabl eTi mreRegul ation reliable receive
(paraneter FederationTi ne)
(paranet er Lookahead)
)
DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the enabl eTi meRegul ati on() service on a remote
LRC.

PARAMETERS
FederationTime

federation time parameters are encoded using the
RTI : : FedTi me. encode() method

Lookahead
federation time parameters are encoded using
RTI : : FedTi me. encode() method

the

Manager.Federate.Service.FederateRestoreComplete

SYNOPSIS

(cl ass Federat eRestoreConpl ete reliable receive
(paraneter Successlndicator)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the f eder at eRest or eConpl et e() service on a remote
LRC.

PARAMETERS
Successindicator

the string “true” or “false” (case insensitive) indicating

whether the restoration of federate-managed state
succeeded (corresponding to the
f eder at eRest or eConpl et e() and

f eder at eRest or eNot Conpl et e() services,
respectively)

Manager.Federate.Service.FederateSaveBegun \

SYNOPSIS
(cl ass Feder at eSaveBegun reliabl e receive)
DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the f eder at eSaveBegun() service on a remote LRC.

Manager.Federate.Service.FederateSaveComplete \

SYNOPSIS

(cl ass Federat eSaveConpl ete reliable receive
(paraneter Successlndicator)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the federat eSaveConpl et e() service on a remote
LRC.

PARAMETERS
SuccessIndicator
the string “true” or “false” (case insensitive) indicating
whether the save of federate-managed state succeeded
(corresponding to the federateSaveConpl et e()and
f eder at eSaveNot Conpl et e() services, respectively

Manager.Federate.Service.FlushQueueRequest \

SYNOPSIS

(class FlushQueueRequest reliable receive
(paraneter FederationTi ne)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the f | ushQueueRequest () service on a remote LRC.

PARAMETERS
FederationTime

federation time parameters are encoded using
RTI : : FedTi me. encode() method

the

Manager.Federate.Service.LocalDeleteObjectinstance

SYNOPSIS

(class Local Del et eObj ectlnstance reliable receive
(paraneter Objectlnstance)

HLA RTI 1.3-Next Generation

11-11

Migration Document

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the | ocal Del et eCbj ect | nstance() service on a
remote LRC.

PARAMETERS
ObjectInstance

the name of the object instance to be affected by the service
invocation

Manager.Federate.Service.ModifyLookahead

SYNOPSIS

(cl ass Modi fyLookahead reliable receive
(paranet er Lookahead)
)
DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the nodi f yLookahead() service on a remote LRC.

PARAMETERS
Lookahead
Federation Time parameters are encoded using the
RTI : : FedTi me. encode() method.

Manager.Federate.Service.NextEventRequest

SYNOPSIS

(cl ass Next Event Request reliable receive
(paraneter FederationTi ne)
)
DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the next Event Request () service on a remote LRC.

PARAMETERS
FederationTime

federation time parameters are encoded using the
RTI : : FedTi me. encode() method

Manager.Federate.Service.NextEventRequestAvailable

SYNOPSIS

(cl ass Next Event Request Avai l abl e reliable receive
(paraneter FederationTi ne)
)
DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the next Event Request Avai | abl e() service on a
remote LRC.

PARAMETERS
FederationTime
federation time parameters are encoded using the
RTI : : FedTi me. encode() method

\ Manager.Federate.Service.PublishinteractionClass

SYNOPSIS

(class PublishlnteractionCl ass reliable receive
(paraneter InteractionC ass)
)
DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the publ i shi nteracti ond ass() service on a remote
LRC.

PARAMETERS
InteractionClass

a string-encoded integer, suitable for conversion using
at ol (), representing an interaction class handle

Manager.Federate.Service.PublishObjectClass

SYNOPSIS

(class Publishbjectd ass reliable receive
(paraneter ObjectC ass)
(paranmeter AttributeList)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the publ i shObj ect d ass() service on a remote LRC.

PARAMETERS
ObjectClass
a string-encoded integer, suitable for conversion using
at ol (), representing an object class handle

AttributeList
a comma-delimited list of string-encoded integers suitable
for conversion using at ol ()

Manager.Federate.Service.ResignFederationExecution

SYNOPSIS

(cl ass Resi gnFederati onExecution reliable receive
(paraneter ResignAction)

)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the resi gnFederati onExecution() service on a
remote LRC.

PARAMETERS
ResignAction

a text string (case insensitive), corresponding to a valid
resign action; the value can be one of the following:

“release attributes”

“delete objects”

“delete objects and release attributes”
“no action”

\Manager.Federate.Service.SubscribeInteractionCIass

SYNOPSIS

(class SubscribelnteractionCl ass reliable receive
(paraneter InteractionC ass)
(paraneter Active)

HLA RTI 1.3-Next Generation

Migration Document

)
DESCRIPTION
Interactions of this class may be generated by a federate to

invoke the subscribelnteractiond ass() service on a
remote LRC.

PARAMETERS
InteractionClass

a string-encoded integer, suitable for conversion using
at ol (), representing an interaction class handle
Active

a string equal to “true” or “false” (case insensitive)
indicating corresponding to an active or passive
subscription, respectively

Manager.Federate.Service.SubscribeObjectClassAttributes

11-12

SYNOPSIS
(class SubscribeObjectC assAttributes reliable
receive
(paraneter ObjectC ass)
(paraneter Attributelist)
(paraneter Active)
)
DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the subscri beObj ect d assAttri butes() service on
a remote LRC.

PARAMETERS

ObjectClass
a string-encoded integer, suitable for conversion using
at ol (), representing an object class handle

AttributeList
a comma-delimited list of string-encoded integers suitable
for conversion using at ol ()

Active

a string equal to “true” or “false” (case insensitive)
indicating corresponding to an active or passive
subscription, respectively

Manager.Federate.Service.SynchronizationPointAchieved

SYNOPSIS

(class Synchroni zati onPoi nt Achi eved reliable receive
(paraneter Label)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the synchroni zat i onPoi nt Achi eved() service on a
remote LRC.

PARAMETERS
Label
a string uniquely identifying the synchronization point

Manager.Federate.Service.TimeAdvanceRequest

SYNOPSIS

(class Ti meAdvanceRequest reliable receive
(paraneter FederationTi ne)
)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the t i meAdvanceRequest () service on a remote LRC.

PARAMETERS
FederationTime
federation time parameters are encoded using the
RTI : : FedTi me. encode() method

Manager.Federate.Service.TimeAdvanceRequestAvailable

SYNOPSIS

(class Ti meAdvanceRequest Avai |l abl e reliable receive
(paraneter FederationTi me)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the ti meAdvanceRequest Avai | abl e() service on a
remote LRC.

PARAMETERS
FederationTime
federation time parameters are encoded using the
RTI : : FedTi me. encode() method

Manager.Federate.Service.Unconditional AttributeOwnershipDiv
estiture

SYNOPSIS

(class Unconditional AttributeOnanershipDivestiture
reliable receive

(paraneter Objectlnstance)
(paraneter Attributelist)

)

DESCRIPTION

Interactions of this class may be generated by a federate to

invoke the

uncondi tional Attri but eOanershi pDivestiture()

service on a remote LRC.

PARAMETERS
ObjectInstance
the name of the object instance to be affected by the service
i nvocation
AttributeList
a comma-delimited list of string-encoded integers suitable
for conversion using at ol ()

Manager.Federate.Service.UnpublishinteractionClass

SYNOPSIS

(class UnpublishlnteractionCl ass reliable receive
(paraneter |nteractionC ass)
)

DESCRIPTION
Interactions of this class may be generated by a federate to

HLA RTI 1.3-Next Generation

Migration Document

invoke the unpublishlnteractiond ass() service on a
remote LRC.

PARAMETERS
InteractionClass

a string-encoded integer, suitable for conversion using
at ol (), representing an interaction class handle

Manager.Federate.Service.UnpublishObjectClass

SYNOPSIS

(class UnpublishObjectC ass reliable receive
(paraneter ObjectC ass)
)
DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the unpubl i shQbj ect G ass() service on a remote
LRC.

PARAMETERS
ObjectClass
a string-encoded integer, suitable for conversion using
at ol (), representing an object class handle

Manager.Federate.Service.UnsubscribelnteractionClass

SYNOPSIS

(class UnsubscribelnteractionCl ass reliable receive
(paraneter InteractionC ass)
)
DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the unsubscri bel nteracti onC ass() service on a
remote LRC.

PARAMETERS
InteractionClass
a string-encoded integer, suitable for conversion using
at ol (), representing an interaction class handle

Manager.Federate.Service.UnsubscribeObjectClass

SYNOPSIS

(class UnsubscribeObjectC ass reliable receive
(paraneter ObjectC ass)

DESCRIPTION
Interactions of this class may be generated by a federate to
invoke the unsubscri behj ect C ass() service on a remote
LRC.

PARAMETERS
ObjectClass
a string-encoded integer, suitable for conversion using
at ol (), representing an object class handle

11.3 Objects

Manager

SYNOPSIS

(cl ass Manager

DESCRIPTION

This class is the root of the MOM object class hierarchy. It has

no attributes and is not intended to be directly subscribed or
instantiated.

\ Manager.Federate

SYNOPSIS
(class Federate

(attribute FederateHandl e reliable receive)
(attribute FederateType reliable receive)
(attribute FederateHost reliable receive)
(attribute RTlversion reliable receive)
(attribute FEDi d reliable receive)
(attribute TineConstrained reliable receive)
(attribute TineRegulating reliable receive)
(attribute AsynchronousDelivery reliable receive)
(attribute FederateState reliable receive)
(attribute Ti meManager State reliable receive)
(attribute FederateTinme reliable receive)
(attribute Lookahead reliable receive)
(attribute LBTS reliable receive)
(attribute M nNextEventTine reliable receive)
(attribute RO ength reliable receive)
(attribute TSO ength reliable receive)
(attribute ReflectionsReceived reliable receive)
(attribute UpdatesSent reliable receive)
(attribute Interacti onsReceived reliable receive)
(attribute InteractionsSent reliable receive)
(attribute ObjectsOmned reliable receive)
(attribute ObjectsUpdated reliable receive)
(attribute ObjectsReflected reliable receive)

)
DESCRIPTION

A single instance of this object class is registered and updated
by an LRC on behalf of its federate. Periodic updates are sent
out with the frequency specified by the most recent
Manager.Federate.Adjust.SetTiming interaction received by the

LRC. By default, no periodic updates are made.

ATTRIBUTES
FederateHandle

a string-encoded integer, suitable for conversion using
at ol (), representing the numeric handle of the federate

FederateType

a string identifying the category of the federate, as provided

as an argument to j oi nFeder ati onExecuti on()
FederateHost

the hostname of the node on which the federate is

executing, as determined by the get host nane() call
RTIVersion

the string #defined as RTI_VERSION in the RTItypes.hh

file of the RTI library employed by the local federate

FEDid

the FED data-designator, as
creat eFeder ati onExecuti on()

specified

TimeConstrained

“True” if time constraint is enabled for the federate,

otherwise “False”
TimeRegulating

“True” if time regulation is enabled for the federate,

HLA RTI 1.3-Next Generation

11-14

Migration Document

otherwise “False”

AsynchronousDelivery
“True” if asynchronous delivery of receive-ordered events
is enabled for the federate, otherwise “False”
FederateState
a test string representing the current run state of the
federate; it will be one of the following:
“Running”
“Saving”
“Save Pending”
“Restoring”
“Restore Pending”

TimeManagerState
a text string representing the current time-advancement
state of the federate; it will be one of the following:
“Idle”
“Advance Pending”

FederateTime
a string, encoded using the getPrintabl eString()
method of the RTI: : FedTi me implementation in use by
the federate, corresponding to the current logical time of
the federate

Lookahead
a string, encoded using the getPrintabl eString()
method of the RTI :: FedTi me implementation in use by
the federate, corresponding to the length of the current
lookahead interval in effect for the federate

LBTS
a string, encoded using the getPrintabl eString()
method of the RTI :: FedTi me implementation in use by

the federate, corresponding to the current federation lower-
bound time-stamp from the perspective of the local federate

MinNextEventTime
a string, encoded using the getPrintabl eString()
method of the RTI: : FedTi me implementation in use by
the federate, corresponding to the current minimum next-
event time from the perspective of the local federate
ROlength
a string-encoded integer representing the number of events
queued for receive-ordered delivery
TSOlength
a string-encoded integer representing the number of events
currently queued for time-stamp-ordered delivery
ReflectionsReceived
a string-encoded integer representing the number of
reflections delivered to the local federate
UpdatesSent
a string-encoded integer representing the number of
updates initiated by the local federate
InteractionsReceived
a string-encoded integer representing the number of

interactions delivered to the local federate (best-effort and
reliable combined)

InteractionsSent
a string-encoded integer representing the number of
interactions initiated by the local federate (best-effort and
reliable combined)

ObjectsOwned
a string-encoded integer representing the number of object
instances for which the local federate holds the privilege to
delete (all object classes combined)

ObjectsUpdated
a string-encoded integer representing the number of object
instances for which there exist one or more instance-
attributes that the local federate owns and has been advised
to update

ObjectsReflected
a string-encoded integer representing the number of object

instances for which the local federate reflects updates of at
least one attribute (best-effort and reliable combined)

\ Manager.Federation

SYNOPSIS
(cl ass Federation

(attribute Federati onNanme reliable receive)
(attribute FederateslnFederation reliable receive)
(attribute RTlIversion reliable receive)
(attribute FEDi d reliable receive)
(attribute LastSaveNare reliable receive)
(attribute LastSaveTinme reliable receive)
(attribute Next SaveNare reliable receive)
(attribute Next SaveTinme reliable receive)

)

DESCRIPTION
A single instance of this object class is registered and updated
by the federation (in reality, each LRC locally maintains the
state of this object for the benefit of its local federate.) The
Federation object instance is updated upon request.

HLA RTI 1.3-Next Generation

11-15

Migration Document

ATTRIBUTES
FederationName
the unique string name of the federation, as specified to
creat eFeder ati onExecuti on()
FederatesIinFederation
a comma-delimited list of string-encoded integers suitable
for conversion using at ol ()

RTIlversion
the string #defined as RTI_VERSION in the RTItypes.hh
file of the RTI library employed by the federation

FEDId

the FED data-designator,
creat eFeder ati onExecuti on()

as specified to
LastSaveName
the label associated with the most-recently completed
federation save (or the empty string if no saves have been
completed)

LastSaveTime
the logical time, encoded using
FedTi meFact ory: : get Pri nt abl eStri ng(), associated
with the most recently completed federation save (or time
zero if no saves have been completed or the most recently
completed save was not associated with a logical time)

NextSaveName
the label associated with the currently pending federation
save (or the empty string if no save is currently pending)

NextSaveTime
the logical time, encoded using
FedTi meFact ory: : get Printabl eString(), associated with the
currently pending federation save (or time zero if no save is pending
or the pending save is not associated with a logical time)

Migration Document

12. Migration Document

12.1 Introduction to Migrating RTI 1.3v6 Federates to RTI 1.3-NG

This section is intended as a “quick start guide” to making the transition from RTI 1.3v6 to 1.3-
NG as smooth as possible by pointing out the most commonly encountered differences and
pitfalls. It is not intended to introduce features and functionality exclusive to RTI version 1.3-
NG, nor is it intended to be an exhaustive list of differences between RTI 1.3v6 and RTI 1.3-NG.

12.2 Management Object Model

12.2.1. General notes

The Manager.Federate.Service interaction ChangeAttributeTransportType was corrected to be
ChangeAttribute TransportationType.

The Manager.Federate.Service interaction ChangelnteractionTransportType was corrected to be
ChangelnteractionTransportationType.

The Manager.Federate.Service interactions RegisterFederationSynchronizationPoint,
RequestFederationRestore and RequestFederationSave were removed because they did not appear in
the interface specification.

The Manager.Federate.Service interactions FederateRestoreComplete, FederateSaveBegun and
FederateSaveComplete currently cannot be used without throwing an exception.

12.2.2. Manager.Federate.Adjust.ModifyAttributeState

An attribute must be unowned in order for a federate to assume ownership via this service.
12.2.3. Manager.Federate.Adjust.SetExceptionLogging

Now, only exceptions are logged to the file. Its default state is off.
12.2.4. Manager.Federate.Report.Alert
This is sent only when exceptions occur.

AlertSeverity has only three possible values instead of five. These values are now strings wheich will
be one of the following:

“RTI exception”
“RTI internal error”

“Federate internal error”

AlertID now represents a count which is incremented after each alert is sent.
12.2.5. Manager.Federate.Report.ReportObjectSubscription

The Active field will now contain "True" or "False" instead of "Active" or "Passive”, respectively.

12.2.6. Manager.Federate.Report.ReportServicelnvocation

All parameters will be included in each ReportServicelnvocation, not just those that are relevant.

HLA RTI 1.3-Next Generation
12-1

Migration Document

All RTI:FedTime types are now represented as the string returned by
RTI::FedTime.getPrintableString()

All RTI::Region types are now represented as the memory address of the region instance.

The ExceptionID parameter will always contain a zero when SuccessIndicator is false, or null when
SuccessIndicator is true.

Note: New to v1.1: A federate will now report an invocation to the joinFederationExecution service if the
reporting federate's RID file has the RID parameter FederationSection.MOM.EnableServiceReporting set to
Yes."

12.2.7. Manager.Federate object

No initial update of this object is sent out automatically; the user must first request an attribute update.

FederateState currently can never have the values of save pending, restoring or restore pending
because no object updates can be sent during those states.

12.3 RTI Initialization Data (Extracted from the RTI.rid file)
12.3.1. Introduction to the RTI 1.3-NG RTI Initialization Date file

This file contains configuration parameters that control the operation of the RTI software. All
parameters have a default setting that is used in the event that a parameter value is not specified
in the RID file or a RID file is not specified. If a RID file is not present, RTI 1.3-NG will use the
directory from which the RtiExec was launched as the current directory for launch of the
FedExec and for saving information during a save or restore invocation. In addition, the user
should expect to see multiple warning messages. Unless a minimum RTL.rid file is used,
directing the RTI to turn off warnings, the user can expect to see multiple warning messages
printed to the screen. These messages will be in the following format:

"<File>", line <x>: <RID param> not found in RID, using default value <RID value>.

Example Warning Message:

"G:\Release_Views\ng_v1.1_dev_nt_vc\rting\rti\priv\pkg\interactionMgt\priv\src\Rtilnteraction
ManagerIncoming.cpp”, line 174: Valid value for Advisories.
InteractionRelevanceAdvisorySwitchDefault not found in RID. Valid values are [Enabled |
Disabled]. Using value of 'ENABLED'
The following snippet would represent the minimum RTL.rid file that would use default settings
without displaying default parameter warnings to the screen:
(RTIdebug
(WarningMessages
(ViewPackageSet Oxfffffffffff7ffff)

)
) ;; End of RTI_Debug

HLA RTI 1.3-Next Generation

12-2

Migration Document
12.3.2. File Location

The RTI-NG software looks for the environment variable, RTI_RID_FILE, which defines the name
and location of the RID file to be used by the application. The file location may be absolute or relative
using the appropriate convention for the particular operating system. The file name is not required to
have a special name or prefix, it only needs to be readable by the application and provide the correct
syntax.

If the RTI_RID_FILE environment variable is not set, the rtiexec process will attempt to open a file
named "RTLrid" in the directory from which the application was launched.

12.3.3. File Format

The format used for the RID file has several rules related to valid parsing of the file. The first rule is
that any text to the right of the comment token, (two semi-colons “;;”), is ignored by the parser. The
second rule is that the left and right parentheses are used for scoping, and must always be used in
matching pairs.

Within a pair of parentheses, there can be either the scope name or a parameter name and value pair.
The scope name is used to organize parameters that are conceptually related and to ensure uniqueness
(in case a parameter name is used multiple times within different scopes). If a parameter name is not
unique, only the last value will be used for the scoping. The parameter name is case insensitive. The
value is parsed as a character string and subsequently interpreted according to the particular parameter
type (e.g., integer, floating point, string).

12.3.4. File Parameter Scoping

Each RID parameter is identified by a scope name in which the scoping is broken into three major
categories according to the granularity of the internal RTI components. The RTI-NG instantiates
components when an RTI process is initially started (the first create or join), when a federation comes
into existence within the process (first create or join of a new federation), and when a particular

federate joins a federation. These scope names are defined below.
ProcessSection - process level component parameters
FederationSection - federation level component parameters
FederateSection - federate level component parameters

It is possible that a RID file used by a particular application will need to support multiple federations
and federates within a single process using different RID parameter values for each federation or
federate. This RID structure can support this situation by creating a scope within the federation or

federate section with the scope name the same as the name of the federation or name of the federate,
respectively.

As an example, assume that an application needs to support two different federations named
FederationA and FederationB. The RID parameter for the multicast base address for FederationB
needs to be different from the address of all other federations. An example RID is shown below where
the BaseAddress used for FederationB is "224.100.0.1" and for all other federations the value is
"224.2.0.1".

(FederationSection

(BaseAddress 224.2.0.1)
HLA RTI 1.3-Next Generation

12-3

Migration Document

(FederationB

(BaseAddress 224.100.0.1)

)

12.3.5. Parameter Definition

Each parameter contained in the RID file provides a description of the effect that the parameter value
has on the operation of the RTI. The RANGE defines the valid parameter values and the DEFAULT
VALUE defines the default value. As previously mentioned, if the parameter and value is not specified
within the RID file the default value will be used by the RTI.

(RTI
;; The RTI scope serves as a namespace for the RID user parameters. No
;; parameter entries should be made at this level.

(ProcessSection
;; Entries in this section apply to the process level components.

(RtiExecutive

;; The RTI Executive is a logically centralized process that is used as a

;; network wide resource manager to handle such items as the uniqueness of
;; federation names. It is logically centralized since redundant processes

;; can be used for fault tolerance (although this feature is currently not

;; supported). The parameters associated with the RTI Executive control

;; how the process is found on the network.

;; PARAMETER: ProcessSection.RtiExecutive.RtiExecutiveEndpoint

;; DESCRIPTION: The RTI Executive endpoint defines the network address and
;; port number used by the RTI Executive process (and hence the RTI Naming

;; Service). The network address can be a hostname or an IP address. The

;; endpoint is only necessary when the multicast discovery mechanism is not

;; used and the endpoint must match the value provided when the RTI Executive
;; process is started.

;; RANGE: A valid hostname or IP address followed by a colon and then the

;; port number.

;; DEFAULT VALUE: None, will use multicast discovery mechanism.

X

i (RtiExecutiveEndpoint hostname:port)
;1 PARAMETER: ProcessSection.RtiExecutive.
" RtiExecutiveMulticastDiscoveryEndpoint

HLA RTI 1.3-Next Generation

12-4

Migration Document

;; DESCRIPTION: The RTI Executive discovery parameter defines the multicast
;; address and port number used for the multicast discovery protocol to find

;; the RT1 Naming Service which is located in the RTI Executive process

;; The naming service will then enable the application to locate distributed

;; RTI components (e.g., RTI Executive).

;; RANGE: A valid multicast IP address (or hostname) followed by a colon and
;; then the port number.

;; DEFAULT VALUE: 224.9.9.2:22605

;5 (RtiExecutiveMulticastDiscoveryEndpoint 224.9.9.2:22605)

;; PARAMETER: ProcessSection.RtiExecutive.NumberOfAttemptsToFindRtiExecutive
;; DESCRIPTION: The NumberAttemptsToFindRtiExecutive parameter is used to

;; control how many attempts the application should use to locate the RTI

;; Naming Service using the multicast discovery mechanism.

;; RANGE: An integer value greater than zero.

;s DEFAULT VALUE: 10

1

i (NumberOfAttemptsToFindRtiExecutive 10)

;; PARAMETER: ProcessSection.RtiExecutive. TimeToWaitAfterEachAttemptinSeconds
;; DESCRIPTION: The TimeToWaitAfterEachAttemptinSeconds parameter is used to

;; control how long the application should wait between attempts to find the

;; RTI Executive using the multicast discovery mechanism.

;; RANGE: A floating point value greater than zero.

;» DEFAULT VALUE: 2.0

;o (TimeToWaitAfterEachAttemptinSeconds 2.0)

) ;; End of ProcessSection.RtiExecutive

(Networking

;; The Networking section is used to define the communication configuration
;; information associated with all of the RTI components within the

;; application using this RID file.

;; PARAMETER: ProcessSection.Networking.FederateEndpoint

;; DESCRIPTION: The Networking endpoint defines the network address and port
;; number used by the federate application process using this RID file. The

;; network address can be a hostname or an IP address. The federate endpoint

;; is used by other distributed RTI components to communicate with internal

;; modules within this application. Typically the federate endpoint does not

HLA RTI 1.3-Next Generation

12-5

Migration Document

;; need to be defined unless the computer has multiple network interfaces.

;; If an environmental variable named RTI_FEDERATE_ENDPOINT is found, its
;; value will be used in favor of what is specified here.

;; RANGE: A valid hostname or IP address followed by a colon and then the

;; port number.

;; DEFAULT VALUE: The default network card and the port.

i (FederateEndpoint hostname:port)

(MulticastOptions

;» The networking multicast options define the parameters that control the

;» behavior of UDP communication within the RTI that is used for Best Effort
;; transport.

;» PARAMETER: ProcessSection.Networking.MulticastOptions.Interface
;; DESCRIPTION: The Interface is used to specify which ethernet

;» interface shall be used to send and receive multicast traffic. On

;; most systems the possible interfaces can be listed with the netstat

;; command). If no interface is specified, the default is used.

;; NOTE: This parameter does not effect multicast name service discovery.

; DEFAULT VALUE: None.

iy (Interface “eth0™)

(Fragmentation

;; The UDP communication protocol (used for Best Effort transport) does
;; not fragment and reassemble data. For messages larger than the UDP
;; fragmentation size the RTI must fragment the message into smaller

;; packets on the send side and then reassemble the packets on the

;; receiver side.

;; PARAMETER: ProcessSection.Networking.MulticastOptions.Fragmentation.FragmentSize
;; DESCRIPTION: The FragmentSize is used to define the maximum number of

;; bytes that can be used as the payload in a UDP packet. Different

;; networks may be capable of supporting different UDP Maximum Transfer

;; Unit (MTU) values.

;; RANGE: An integer greater than zero representing the number of bytes.

;; DEFAULT VALUE: 62000

i (FragmentSize 62000)

HLA RTI 1.3-Next Generation

12-6

Migration Document

;; PARAMETER: ProcessSection.Networking.MulticastOptions.Fragmentation.ReassemblyTimerIntervalinSeconds
;; DESCRIPTION: TheReassmeblyTimerlIntervallnSeconds parameter is used to control how long
;; control how long the receiver will wait to receive all of the fragments

;; that make up a single message. Since UDP is not a reliable communication

;; protocol the fragments can be lost and the receiver needs to know how long

;; to wait before discarding incomplete fragments. For performance reasons

;; the RTI does not create a timer for each fragment set, instead a common

;; timer is used and each incomplete fragment set is incremented and removed

;; after MaxTimeouts.

;; RANGE: A floating point value greater than zero.

;s DEFAULT VALUE: 1.0

1

i (ReassemblyTimerlntervallnSeconds 1.0)

;» PARAMETER: ProcessSection.Networking.MulticastOptions.Fragmentation.MaxTimeouts
;; DESCRIPTION: The MaxTimeouts parameter is used to control how long the
;; receiver will wait to receive all of the fragments that make up a
;; single message. Since UDP is not a reliable communication protocol the
;; fragments can be lost and the receiver needs to know how long to wait
;; before discarding incomplete fragments. For performance reasons the RTI
;; does not create a timer for each fragment set, instead a common timer is
;; used and each incomplete fragment set is incremented and removed after
;1 MaxTimeouts.
;; RANGE: An integer value greater than zero.
;s DEFAULT VALUE: 3
i (MaxTimeouts 3)
) ;; End of ProcessSection.Networking.MulticastOptions.Fragmentation
) ;; End of ProcessSection.Networking.MulticastOptions
) ;; End of ProcessSection.Networking

(ProcessModel

;; The process model controls the mechanism used by the RTI to obtain
;; processing cycles and support callbacks to the federate during the tick
;5 call.

;; PARAMETER: ProcessSection.ProcessModel.StrategyToUse

;; DESCRIPTION: There are currently two process model strategies that are
;; supported by the RTI; (1) polling process model and (2) asynchronous 1/0
;; process model. The polling process model uses a single thread of

HLA RTI 1.3-Next Generation

12-7

Migration Document

;; execution shared between the RTI and the federate. Only when the federate
;; calls tick is the RT1 able to perform work. This strategy can starve the

. RTI if tick is not called appropriately. The asynchronous 1/O process

;; model uses an internal thread within the RTI to avoid starvation. This

;; thread will periodically wake up and determine if it can perform any

;; internal RTI work. In the asynchronous 1/O strategy the federate only

;; needs to invoke tick when it is prepared to handle callbacks.

;» RANGE: An enumeration value {Polling, AsynchronouslO}.

;; DEFAULT VALUE: AsynchronouslO

e (StrategyToUse AsynchronouslO)
) ;; End of ProcessSection.ProcessModel

(Scheduler
;» The Scheduler section contains parameters associated with the behavior of
;» the tick service.

;; PARAMETER: ProcessSection.Scheduler.SingleCallbackPerTick

;; DESCRIPTION: When using the tick service without the minimum and maximum
;; time arguments the RTI can be directed to return a single callback or

;; provide all available callbacks. Using this service with a setting of No

;; indicates to the RTI that all available callbacks should be delivered to

;; the federate in a single tick() call.

;; RANGE: An enumeration value {Yes, No}.

;; DEFAULT VALUE: No.

i (SingleCallbackPerTick No)

) ;; End of ProcessSection.Scheduler
) ;; End of ProcessSection

(FederationSection
;; Entries in this section apply to the federation level components.

(FederationExecutive

;; The FederationExecutive section contains parameters related to the
;; federation executive process that is launched when a federation is
;; created.

;i PARAMETER: FederationSection.FederationExecutive.FederationExecutiveEndpoint
;; DESCRIPTION: The Federation Executive endpoint defines the network address

HLA RTI 1.3-Next Generation

12-8

Migration Document

;; and port number used by the Federation Executive process. The network

;; address can be a hostname or an IP address. Typically, the endpoint only

;; needs to be defined when the Federation Executive needs to use the

;; non-default network interface, or when the Federation Executive (i.e.,

;; fedex) is to run on a different host than the RTI Executive.

;; RANGE: A valid hostname or IP address followed by a colon and then the

;; port number.

;3 DEFAULT VALUE: Will use same default hostname on the host where the RTI
;; Executive is running, with a system generated port number.

i15» (FederationExecutiveEndpoint hostname:port)

;; PARAMETER: FederationSection.FederationExecutive.FilenameOfFederationExecutiveExecutable
;; DESCRIPTION: This parameter defines the relative or absolute path to the

;; Federation Executive executable (i.e., fedex). The relative path is

;; defined relative to the location of the RTI Executive.

;; RANGE: A valid path to the fedex executable.

;s DEFAULT VALUE: fedex

i (FilenameOfFederationExecutiveExecutable fedex)

;» PARAMETER:
FederationSection.FederationExecutive. TimeToWaitBeforeCommunicatingWithFederationExecutivelnSeconds

;; DESCRIPTION: This parameter is used to allow the federate application to
;; wait a period of time before trying to connect to the Federation Executive

;; process. A small delay may be necessary when the Federation Executive is
;; being created.

;; RANGE: An integer greater than or equal to zero.

;y DEFAULT VALUE: 3

1

i (TimeToWaitBeforeCommunicatingWithFederationExecutivelnSeconds 3)

;; PARAMETER: FederationSection.FederationExecutive.NumberOfAttemptsToFindFederationExecutive
;; DESCRIPTION: The federate application may attempt to connect to the

;; Federation Executive process multiple times.

;; RANGE: An integer number greater than zero.

;» DEFAULT VALUE: 10

1

i (NumberOfAttemptsToFindFederationExecutive 10)

;; PARAMETER: FederationSection.FederationExecutive. TimeToWaitAfterEachAttemptinSeconds
;; DESCRIPTION: When the federate application fails to initially connect to

HLA RTI 1.3-Next Generation

12-9

Migration Document

;; the Federation Executive process it can wait a fixed period of time.
;; RANGE: A floating point number greater than or equal to zero.
;; DEFAULT VALUE: 2.0

e (TimeToWaitAfterEachAttemptinSeconds 2.0)

;» PARAMETER: FederationSection.FederationExecutive.FilenameToRedirectStdout
;; DESCRIPTION: This parameter can be used to direct standard output to a

;; file, rather than the default output device.

;1 RANGE: A valid filename.

;; DEFAULT VALUE: None, will use the standard output device.

X

;i5» (FilenameToRedirectStdout fedex.stdout)

;; PARAMETER: FederationSection.FederationExecutive.FilenameToRedirectStderr
;; DESCRIPTION: This parameter can be used to direct standard error to a

;; file, rather than the default error device.

;; RANGE: A valid filename.

;; DEFAULT VALUE: None, will use the standard error device.

1

iioy (FilenameToRedirectStderr fedex.stderr)

;» PARAMETER: FederationSection.FederationExecutive.DirectoryForSaveAndRestoreFiles
;; DESCRIPTION: This parameter provides the pathname to the directory used

;; when producing new saved files or processing existing saved files.

;; RANGE: A valid directory pathname.

;; DEFAULT_VALUE: .

;i (DirectoryForSaveAndRestoreFiles .)
) ;; End of FederationSection.FederationExecutive

;; PARAMETER: FederationSection.TimelntervalToCheckForUnresponsiveFederationinSeconds
;; DESCRIPTION: The RTI Executive employs a simple heartbeat model as a means

;; to clear the name of an unresponsive federation from the RTI Naming

;; Service so that the name can be reused. This parameter sets the time

;; interval in seconds at which the RTI Executive checks to see whether it has

;; heard from the Federation Executive.

;; RANGE: A floating point value greater than zero.

;; DEFAULT_VALUE: 60.0

HLA RTI 1.3-Next Generation
12-10

Migration Document

i, (Timelnterval ToCheckForUnresponsiveFederationInSeconds 60.0)

;; PARAMETER: FederationSection.TimeToWaitBeforeDeclaringFederationDeadInSeconds
;; DESCRIPTION: The RTI Executive employs a simple heartbeat model as a means

;; to clear the name of an unresponsive federation from the RTI Naming Service

;; S0 that the name can be reused. This parameter sets the time to wait in

;» seconds before the RTI Executive removes the name of a federation from

;; which it has not received a ping reply.

;; RANGE: A floating point value greater than zero.

;s DEFAULT_VALUE: 90.0

iy (TimeToWaitBeforeDeclaringFederationDeadInSeconds 90.0)

(Federationlnterconnect
;; The FederationlInterconnect section contains parameters associated with the
;; configuration of reliable transport configuration channels.

;; PARAMETER: FederationSection.FederationInterconnect.StrategyToUse

;; DESCRIPTION: The interconnection of RTI nodes for reliable traffic can use
;; either a CollocatedEventChannel or a CentralizedEventChannel strategy. The
;; CollocatedEventChannel strategy allows each RTI node (i.e., each federate

;; application) to contain a "TCP exploder" that is connected to every other

;; node. The CentralizedEventChannel strategy uses a single node to receive

;; all of the federation reliable traffic and transmit this data to the

;; interested receivers. The CollocatedEventChannel adds some processing

;; requirements to each node to perform the TCP writes, but it avoids latency

;; when going through a centralized node which has the processing burden of

;1 the entire federation.

;; RANGE: An enumeration value {CollocatedEventChannels,

;; CentralizedEventChannel}

;» DEFAULT VALUE: CollocatedEventChannels

1

iy (StrategyToUse CollocatedEventChannels)

;; PARAMETER: FederationSection.Federationinterconnect.PinglIntervallnSeconds
;; DESCRIPTION: Controls the rate at which the interconnect sends ping

;; requests to each node. This is used to determine the “wellness” of the

;» nodes.

;» RANGE: A real number greater than 1.0 or Off

;y DEFAULT VALUE: 5.0

;1 Values

HLA RTI 1.3-Next Generation

12-11

Migration Document

1

i (PingIntervallnSeconds 5.0)
) ;; End of FederationSection.FederationInterconnect

(Networking
;; This section contains parameters related to networking information related
;; to the federation components.

(BundlingOptions
;; Federation data can be bundled by the sender in order to improve
;; throughput, at the expense of latency.

(UDP
;; RTI best effort transport uses User Datagram Protocol (UDP).

;; PARAMETER: FederationSection.Networking.BundlingOptions.UDP.MaxTimeBeforeSendInSeconds
;; DESCRIPTION: This parameter is the maximum amount of time that the RTI

;; will wait before the RTI flushes the data. If set to 0, bundling will

;; be disabled.

;» RANGE: A floating point value greater than or equal to zero.

;» DEFAULT VALUE: 0.005

1

i (MaxTimeBeforeSendinSeconds 0.005)

;; PARAMETER: FederationSection.Networking.BundlingOptions.UDP.MaxBytesBeforeSend
;; DESCRIPTION: This parameter is the maximum number of bytes that will be

;; bundled before the RTI flushes the data.

;; RANGE: An integer value greater than or equal to zero.

;; DEFAULT VALUE: 63000

1

i (MaxBytesBeforeSend 63000)
) ;; End of FederationSection.Networking.BundlingOptions.UDP

(TCP
;; RTI Reliable transport uses Transfer Control Protocol (TCP).

;; PARAMETER: FederationSection.Networking.BundlingOptions. TCP.MaxTimeBeforeSendInSeconds
;; DESCRIPTION: This parameter is the maximum amount of time that the RTI

;; will wait before the RTI flushes the data. If set to 0, bundling will

;; be disabled.

HLA RTI 1.3-Next Generation

12-12

Migration Document

;; RANGE: A floating point value greater than or equal to zero.
;» DEFAULT VALUE: 0.005

1

i (MaxTimeBeforeSendinSeconds 0.005)

;; PARAMETER: FederationSection.Networking.BundlingOptions. TCP.MaxBytesBeforeSend
;; DESCRIPTION: This parameter is the maximum number of bytes that will be

;; bundled before the RTI flushes the data.

;; RANGE: An integer value greater than or equal to zero.

;; DEFAULT VALUE: 63000

1

i (MaxBytesBeforeSend 63000)
) ;; End of FederationSection.Networking.BundlingOptions. TCP
) ;; End of FederationSection.Networking.BundlingOptions

(MulticastOptions

;; The networking multicast options define the parameters that control the

;; behavior of UDP communication within the RT1 that is used for Best Effort
;5 transport.

;; PARAMETER: FederationSection.Networking.MulticastOptions.PortNumber
;; DESCRIPTION: The port number of the socket used for sending multicast

;; traffic in support of Best Effort transport.

;; RANGE: An integer value representing a valid port number, or

;; the string RTI-selected to have the RTI select an available port

;; DEFAULT VALUE: RTI-selected

;i (PortNumber 2000)

;; PARAMETER: FederationSection.Networking.MulticastOptions.Base Address
;; DESCRIPTION: The base network address (IP four decimal address or

;; hostname) for sending multicast traffic. The Best Effort traffic will be

;; segmented into different multicast addresses when using the Data

;; Distribution Management (DDM) services. The maximum number of multicast
;; addresses used by the RTI will be defined by the available addresses

;; between the MaxAddress and the BaseAddress, although the actual number

;; used may be far less (see DDM parameters).

;; RANGE: Any valid IP multicast address, e.g., from 224.0.0.3 to

;; 239.255.255.255

HLA RTI 1.3-Next Generation

12-13

Migration Document

;; DEFAULT VALUE: 224.1.0.0

;i (BaseAddress 224.1.0.0)

;; PARAMETER: FederationSection.Networking.MulticastOptions.MaxAddress
;; DESCRIPTION: The maximum network address (IP four decimal address or
;; hostname) for sending multicast traffic. The Best Effort traffic will be

;; segmented into different multicast addresses when using the Distribution

;; Management (DDM) services. The maximum number of multicast addresses
;; used by the RTI will be defined by the available addresses between the

;; MaxAddress and the BaseAddress, although the actual number used may be
;; far less (see DDM parameters).

;; RANGE: Any valid IP multicast address greater than or equal to the base

;; address.

;; DEFAULT VALUE: 239.255.255.255

i (MaxAddress 239.255.255.255)

;; PARAMETER: FederationSection.Networking.MulticastOptions. TimeToLive
;; DESCRIPTION: To prevent infinite routing loops, UDP multicast packets are
;; marked with a counter that is decremented each time a router sees the

;; packet. This counter is called TTL (Time To Live). Routers will not

;; pass any packets with a TTL less than 2. Consequently, to pass UDP

;; multicast between LAN's, not only must the routers be properly

;; configured, but the TTL must be at least 2 as well.

;; RANGE: An integer from 0 to 255

;; DEFAULT VALUE: 1

i (TimeToLive 1)

) ;; End of FederationSection.Networking.MulticastOptions

) ;; End of FederationSection.Networking

(Advisories

;; The advisories section contains parameters related to the RTI advisory

;; mechanisms. The scope advisories that inform the federate when certain
;; attributes owned by other federates are in or out of scope with respect to
;; the federate's subscriptions. The relevance advisories inform the

;; publishing federate whether other federates in the federation are

;; interested in particular object or interaction classes and particular

;; object attribute instances.

HLA RTI 1.3-Next Generation

12-14

Migration Document

;; PARAMETER: FederationSection.Advisories.ClassRelevance AdvisorySwitchDefault
;; DESCRIPTION: This parameter controls the switch to define if the object

;; class relevance advisory mechanism is enabled when the federate begins.

;; The class relevance advisories will inform the federate if there exists

;; any other federate within the federation that is subscribed to a

;; particular class. The relevance advisories could be beneficial in large

;; scale federations, although there may be significant performance cost in

;; calculating these advisories.

;; RANGE: An enumeration value {Enabled, Disabled}

;s DEFAULT VALUE: Enabled

1

i (ClassRelevance AdvisorySwitchDefault Enabled)

;; PARAMETER: FederationSection.Advisories.AttributeRelevance AdvisorySwitchDefault
;; DESCRIPTION: This parameter controls the switch to define if the object
;; attribute relevance advisory mechanism is enabled when the federate

;; begins. The attribute relevance advisories will inform the federate if

;; there exists any other federate within the federation that is subscribed

;; such that they would receive updates from a particular attribute instance.
;; The relevance advisories could be beneficial in large scale federations,

;; although there may be significant performance cost in calculating these

;; advisories.

;; RANGE: An enumeration value {Enabled, Disabled}

;s DEFAULT VALUE: Disabled

1

i (AttributeRelevance AdvisorySwitchDefault Disabled)

;; PARAMETER: FederationSection.Advisories.AttributeScope AdvisorySwitchDefault
;; DESCRIPTION: This parameter controls the switch to define if the object

;; attribute scope advisory mechanism is enabled when the federate begins.

;; The attribute scope advisories will inform the federate if a particular

;; attribute instance being updated from another federate matches the

;; federates subscriptions. If the attribute is in scope the federate will

;; receive any updates, and if the attribute is out of scope any updates will

;; not be reflected.

;; RANGE: An enumeration value {Enabled, Disabled}

;; DEFAULT VALUE: Disabled

i (AttributeScopeAdvisorySwitchDefault Disabled)

;; PARAMETER: FederationSection.Advisories.InteractionRelevance AdvisorySwitchDefault

HLA RTI 1.3-Next Generation

12-15

Migration Document

;; DESCRIPTION: This parameter controls the switch to define if the

;; interaction relevance advisory mechanism is enabled when the federate
;; begins. The interaction relevance advisories will inform the federate if
;; there exists any other federate within the federation that is subscribed

;; to a particular interaction class. The relevance advisories could be

;; beneficial in large scale federations, although there may be significant
;; performance cost in calculating these advisories.

;; RANGE: An enumeration value {Enabled, Disabled}

;y DEFAULT VALUE: Enabled

X

;i (InteractionRelevance AdvisorySwitchDefault Enabled)

;; PARAMETER: FederationSection.Advisories.RelevanceAdvisorylnteractionClassHeartbeatinSeconds
;; DESCRIPTION: The relevance advisory interaction class heartbeat parameter
;; controls how often each federate will broadcast interaction subscription

;; information to the other RTI nodes in order to calculate if there is a

;; federate that has an interest in a particular interaction class. The

;; heartbeat mechanism is used as a more scalable approach than requiring

;; each federate to buffer global subscription knowledge for the entire

;; federation. If interaction relevance advisories are not used within the

;; federation then the value of Off can be used. If the interaction

;; relevance advisories are being used the heartbeat rate should be the

;; maximum delay in receiving the interaction advisory that is tolerable.

;; RANGE: A floating point value greater than zero, or an enumeration value

;; of Off.

;s DEFAULT VALUE: 10.0

1

i (RelevanceAdvisorylinteractionClassHeartbeatInSeconds 10.0)

;; PARAMETER: FederationSection.Advisories.RelevanceAdvisorylnteractionClassTimeoutInSeconds
;; DESCRIPTION: The relevance advisory interaction timeout parameter defines
;; how long a federate will wait to receive a relevance interaction

;; subscription heartbeat that matches a particular interaction class.

;; A-match is necessary to inform the federate that there is

;; interest. The heartbeat mechanism is used as a more scalable approach

;; than requiring each federate to buffer global subscription knowledge for

;; the entire federation. If interaction relevance advisories are not used

;» within the federation then the value of Off can be used.

;; If the relevance advisories are being used the timeout rate should be

;; at least twice that of the heartbeat rate.

;; RANGE: A floating point value greater than zero, or an enumeration value

HLA RTI 1.3-Next Generation

12-16

Migration Document

;; of Off.
;; DEFAULT VALUE: 30.0

1

i (RelevanceAdvisorylnteractionClassTimeoutInSeconds 30.0)

;; PARAMETER: FederationSection.Advisories.RelevanceAdvisoryObjectClassHeartbeatInSeconds
;; DESCRIPTION: The relevance advisory object class heartbeat parameter
;; controls how often each federate will broadcast object class subscription

;; information to the other RTI nodes in order to calculate if there is a

;; federate that has an interest in a particular object class. The

;; heartbeat mechanism is used as a more scalable approach than requiring

;; each federate to buffer global subscription knowledge for the entire

;; federation. If object class relevance advisories are not used within the

;; federation then the value of Off can be used. If the object class

;; relevance advisories are being used the heartbeat rate should be the

;; maximum delay in receiving the advisory that is tolerable.

;; RANGE: A floating point value greater than zero, or an enumeration value
;; of Off.

;; DEFAULT VALUE: 10.0

1

;i (RelevanceAdvisoryObjectClassHeartbeatinSeconds 10.0)

;; PARAMETER: FederationSection.Advisories.RelevanceAdvisoryObjectClassTimeoutInSeconds
;; DESCRIPTION: The relevance advisory object class timeout parameter

;; defines how long a federate will wait to receive a relevance object

;; class subscription heartbeat that matches a particular object class.

;; A-match is necessary to inform the federate that there is

;; interest. The heartbeat mechanism is used as a more scalable approach

;; than requiring each federate to buffer global subscription knowledge for

;; the entire federation. If object class relevance advisories are not used

;» within the federation then the value of Off can be used.

;; If the relevance advisories are being used the timeout rate should be at

;; least twice that of the heartbeat rate.

;; RANGE: A floating point value greater than zero, or an enumeration value
;; of Off.

;; DEFAULT VALUE: 30.0

1

i (RelevanceAdvisoryObjectClassTimeoutIinSeconds 30.0)

;; PARAMETER: FederationSection.Advisories.RelevanceAdvisoryAttributelnstanceHeartbeatInSeconds
;; DESCRIPTION: The relevance advisory attribute instance heartbeat parameter

HLA RTI 1.3-Next Generation

12-17

Migration Document

;; controls how often each federate will broadcast attribute instance

;; subscription information to the other RTI nodes in order to calculate if

;; there is a federate that has an interest in a particular attribute

;; instance. The heartbeat mechanism is used as a more scalable approach

;; than requiring each federate to buffer global subscription knowledge for

;; the entire federation. If attribute instance relevance advisories

;; are not used within the federation then the value of Off can be used.

;; If the attribute instance relevance advisories are being used the

;; heartbeat rate should be the maximum delay in receiving the advisory that
; is tolerable.

;; RANGE: A floating point value greater than zero, or an enumeration value
;; of Off.

;; DEFAULT VALUE: 10.0

X

i (RelevanceAdvisoryAttributelnstanceHeartbeatInSeconds 10.0)

;; PARAMETER: FederationSection.Advisories.RelevanceAdvisoryAttributelnstanceTimeoutInSeconds
;; DESCRIPTION: The relevance advisory attribute instance timeout parameter
;; defines how long a federate will wait to receive a relevance attribute

;; instance subscription heartbeat that matches a particular attribute

;; instance. A match is necessary to inform the federate that there is

;; interest. The heartbeat mechanism is used as a more scalable approach

;; than requiring each federate to buffer global subscription knowledge for

;; the entire federation. If attribute instance relevance advisories

;; are not used within the federation then the value of Off can be used.

;; If the relevance advisories are being used the timeout rate should be at

;; least twice that of the heartbeat rate.

;; RANGE: A floating point value greater than zero, or an enumeration value

;; of Off.

;; DEFAULT VALUE: 30.0

X

i (RelevanceAdvisoryAttributelnstance TimeoutInSeconds 30.0)

;; PARAMETER: FederationSection.Advisories.ProvideAttributeValueUpdateDelay TimelnSeconds
;; DESCRIPTION: The provide attribute value update delay time parameter

;; defines the amount of time that a federate will “hold onto™ a

;; object-instance-level provideAttributeValueUpdate command before

;; delivering it to the federate ambassador. While the command is being

;; held, if identical provideAttributeVValueUpdate commands are generated,

;; then only one is eventually delivered. This behavior potentially

;; reduces the number of identical provideAttributeVValueUpdate commands a

HLA RTI 1.3-Next Generation

12-18

Migration Document

;; federate must process in a given time period. Furthermore, the reduced
;; network traffic due fewer resulting updateAttributeVValue commands

;; can also greatly improve performance.

;» RANGE: A non-negative floating point value.

;» DEFAULT VALUE: 0.0

1

i (ProvideAttributeValueUpdateDelay TimelnSeconds 0.0)
) ;; End of FederationSection.Advisories

(TimeManagement
;; This section contains parameters related to the RTI Time Management
;3 Services.

;; PARAMETER: FederationSection. TimeManagement. TimeToWaitForLbtsCalculationsBeforeErrorinSeconds
;; DESCRIPTION: This parameter is used to control how long the LBTS (Lower

;; Bound on Time Stamp) calculation will stall before reporting an error.

;; The event synchronization algorithm requires coordination with all of the

;; federates when any federate becomes time regulating. If in the process of

;; calculating the LBTS a federate becomes unresponsive the calculation will

;; stall and report an error after waiting the amount of time defined by this

;; parameter.

;; RANGE: A floating point value greater than zero.

;y DEFAULT VALUE: 10.0

1

e (TimeToWaitForLbtsCalculationsBeforeErrorinSeconds 10.0)

;; PARAMETER: FederationSection. TimeManagement.

" TimeToWaitInBetweenLbtsCalculationsinSeconds

;; DESCRIPTION: This parameter controls how long the synchronization process
;; will wait after completing an LBTS computation before initiating another

;; calculation. A small value will allow the federation to advance logical

;; time more quickly, but will also increase the rate of computations and

;; communications. The value should be based on the maximum rate (advances
;; per seconds of wallclock time) at which the federation would ever be

;; required to advance time.

;; RANGE: A floating point value greater than or equal to zero.

;» DEFAULT VALUE: 0.010

1

e (TimeToWaitinBetweenLbtsCalculationsInSeconds 0.010)

HLA RTI 1.3-Next Generation

12-19

Migration Document

) ;; End of FederationSection. TimeManagement

(DataDistribution
;; This section contains parameters related to the RTI Data Distribution
;; Management services.

;; PARAMETER: FederationSection.DataDistribution.StrategyToUse

;; DESCRIPTION: The routing of federation data using the RTI Data

;; Distribution Management (DDM) services can be implemented using different
;; techniques. Each technique will have different characteristics that may

;; effect the performance of DDM depending on the particular operating

;; conditions of the federation. The initial data routing strategies offered

;; are:

;; Simple - Uses two data channels, one for Best Effort and one for

;; Reliable transport. This scheme provides no segmentation of data based on
;; DDM usage and is useful for testing purposes.

;; StaticSpacePartitioned - Uses two channels per routing space, one for Best
;; Effort and one for Reliable transport. This scheme segments data

;; according to the routing space that a particular class or attribute is

;; assigned to in the RID file. This mechanism provides a simplification to

;; the grid partitioned scheme in which segmentation is only required based on
;; the routing space, not the particular update and subscription regions

;; within a space.

;; StaticGridPartitioned - Uses two channels (Best Effort and Reliable) for

;; each hypercube formed by partitioning each dimension of a routing space in a
;; grid like fashion. The number of partitions in each dimension is user

;; defined. This scheme offers the federation control of how to statically

;; segment federation traffic for their particular exercise.

;; RANGE: An enumeration value {Simple, StaticSpacePartitioned,

;; StaticGridPartioned}.

;; DEFAULT VALUE: StaticGridPartitioned

1

e (StrategyToUse StaticGridPartitioned)

(Options
;; This section contains parameters associated with the DDM implementations.

;; PARAMETER: FederationSection.DataDistribution.BestEffortChannel Type
;; DESCRIPTION: This parameter allows for the specification of the

;; particular channel type for all Best Effort traffic. Currently a UDP

;; multicast and TCP channel type are supported. Additional channel types

HLA RTI 1.3-Next Generation

12-20

Migration Document

;; may be available in future releases.
;; RANGE: An enumeration value {UDPmulticast, TCP}.
;; DEFAULT_VALUE: UDPmulticast

i (BestEffortChannel Type UDPmulticast)

;; PARAMETER: FederationSection.DataDistribution.ReliableChannel Type
;; DESCRIPTION: This parameter allows for the specification of the

;; particular channel type for all Reliable traffic. Currently a UDP

;; multicast and TCP channel type are supported. Additional channel types
;; may be available in future releases.

;; RANGE: An enumeration value {UDPmulticast, TCP}.

;; DEFAULT_VALUE: TCP

o (ReliableChannel Type TCP)

(StaticGridPartitionedStrategyOptions
;; This section contains parameters related to the static grid strategy.

;» PARAMETER:
FederationSection.DataDistribution.StaticGridPartitionedStrategyOptions.MaxNumberOfDataChannelsToUse

;; DESCRIPTION: This parameter is used to define the maximum number of data
;; channels to be used by the segmentation of all routing spaces. A

;; larger number of channels may provide more effective segmentation of the
;; federation data, but for Best Effort traffic using UDP the segmentation

;; can be limited by the number of available multicast addresses (see

;; MulticastOptions in the FederationSection). If the maximum number of

;; channels exceed the available multicast addresses the algorithm will

;; reuse the addresses and therefore reducing segmentation efficiency.

;; The TCP mechanism for Reliable traffic has a 2232 limit on the number of
;; channels due to the fact that a 32 bit quantity is used to address the

;; data.

;; RANGE: An integer value greater than zero.

;; DEFAULT_VALUE: 64

1

ne (MaxNumberOfDataChannelsToUse 64)

;y PARAMETER:
FederationSection.DataDistribution.StaticGridPartitionedStrategyOptions.NumPartitionsPerDimension

;; DESCRIPTION: This parameter is used to define the default number of
;; partitions that are used for each dimension to segment the space. A
;; larger number of partitions will increase segmentation (provided there

HLA RTI 1.3-Next Generation

12-21

Migration Document

;; is not a limit with the number of channels to use or a limit in the

;; number of multicast addresses for UDP). Further refinement to the space
;; partitioning can be accomplished by having different decimation for

;; different dimensions in different spaces using the parameters in the

;; SpaceOptions section.

;7 RANGE: An integer value greater than zero.

;s DEFAULT_VALUE: 1

1

i (NumPartitionsPerDimension 1)

(SpaceOptions

;; The SpaceOptions Section enables the number of partitions on any given
;; dimension within any space to override the default. Note that to

;; control these parameters they need to be defined based on the

;; particular routing space names used in the FED (Federation Execution

;; Data) file. The examples below are shown for two spaces "SpaceA" and
;; "SpaceB", but these names would have to be replaced for use within a

;; particular federation. The NumPartitions parameter is associated with a
;; particular numbered dimension (e.g., dimensionl, dimension2) and

;; defines the decimation for that dimension in the appropriate routing

;3 space.

(SpaceA

(DimensionOptions
;v (dimensionl (NumPartions 2))
;v (dimension2 (NumPartions 3))
)

)

(SpaceB

(DimensionOptions
;i (dimensionl (NumPartions 5))
)

)
) ;; End of ...StaticGridPartitionedStrategyOptions.SpaceOptions

) ;; End of ...DataDistribution.StaticGridPartitionedStrategyOptions
) ;; End of ...DataDistribution.Options
) ;; End of FederationSection.DataDistribution

(MOM

;; This section contains parameters related to MOM.

HLA RTI 1.3-Next Generation

12-22

Migration Document

;; PARAMETER: FederationSection.MOM.MomServiceAvailable

;; DESCRIPTION: Although MOM services are very useful for federation
;; monitoring and control there is an overhead associated with MOM. This
;; parameter allows a federation to turn off MOM services if they are not

;; being used within the federation.

;i RANGE: An enumeration value {Yes, No}.

;y DEFAULT_VALUE: Yes

1

i (MomServiceAvailable Yes)

;; PARAMETER: FederationSection.MOM.MomTickingIntervallnSeconds

;; DESCRIPTION: This parameter is to control how often MOM will obtain

;; processing cycles to perform work. It should be set at the maximum amount
;; of time the federation can tolerate for waiting for MOM responses.

;» RANGE: A floating point value greater than zero.

;; DEFAULT_VALUE: 3.0

is (MomTickingIntervallnSeconds 3.0)

;; PARAMETER: FederationSection.MOM.ExceptionLoggingFilePrefix

;; DESCRIPTION: This parameter specifies the file prefix for the exception

;; log. The file is written into the federate's current directory and has

;; the form: <Prefix>_<fedName> where <fedName> is the federate identifier as
;; specified in the call to joinFederationExecution

;; RANGE: A valid file name.

;; DEFAULT_VALUE: RtiMomExceptionLoggingFile

1

;i (ExceptionLoggingFilePrefix RtiMomExceptionLoggingFile)

;; PARAMETER: FederationSection.MOM.EnableServiceReporting

;; DESCRIPTION: This controls whether the federate has service reporting
;; enabled upon startup.

;; RANGE: An enumeration value {Yes, No}.

;; DEFAULT_VALUE: No

;v (EnableServiceReporting No)

) ;; End of FederationSection.MOM

(FederateSection
;; Entries in this section apply to federate level components. They can
;; also be used to override upper section parameters.

HLA RTI 1.3-Next Generation

12-23

Migration Document

(EventRetractionHandleCacheOptions

;; Each federate keeps a cache of Event Retraction Handles that it has

;; generated. To prevent this cache from growing without bound, Event

;; Retraction Handles with a timestamp in the past are periodically purged.

;; PARAMETER: FederateSection.EventRetractionHandleCacheOptions.MinimumCacheSizeBeforePerformingPurge
;; DESCRIPTION: If the event retraction cache has fewer then

;; MinimumCacheSizeBeforePerformingPurge entries, purging will be skipped.

;; RANGE: An unsigned long

;; DEFAULT_VALUE: 65535

;i (MinimumCacheSizeBeforePerformingPurge 65535)

;s PARAMETER:
FederateSection.EventRetractionHandleCacheOptions.NumberOfEventRetractionHandlesToCreateBeforeStartingNewP
urgeCycle

;; DESCRIPTION: Purging of the Event Retraction Handle cache may occur if at
;; least NumberOfEventRetractionHandlesToCreateBeforeStartingNewPurgeCycle
;; Event Retraction Handles have been added to the cache since the last time
;; the cache was purged.
;; RANGE: An unsigned long
;; DEFAULT_VALUE: 1024
;;11(NumberOfEventRetractionHandlesToCreateBeforeStartingNewPurgeCycle 1024)
) ;; End of ...FederateSection.EventRetractionHandleCacheOptions

) ;; End of FederationSection.FederateSection

) ;; End of FederationSection

) ;; End of RTI

12.4 Notes on porting FoodFight from RTI1.3v6 to RTI1.3-NG

12.4.1. Migrating FoodFight for the Hands-On Practicum to RTI 1.3-NG

1. Prior to porting your code, it would be wise to review the RTI.hh file. Because of our desire to
allow the use the Standard C++ fstream header file or to use of the legacy fstream.h header file.
An immediate issue arose with whether ostream is in the global namespace or in namespace std.
Our solution was to add a RTI_USES_STD_FSTEAM flag which triggers the following code
snippet.

#ifdef RTI_USES _STD FSTREAM
include <fstream>

define RTI_STD std

#else

HLA RTI 1.3-Next Generation

12-24

12.4.2.

Migration Document

include <fstream.h>
define RTI_STD /* nothing */
#endif

During the compilation of FoodFight.cpp we experienced no other difficulties.
Review the .rid file parameters above:

- RTI 1.3-NG requires that you identify the location of the fedex.exe file in the
RTI_FederationExecutive.PathOfTheFullExecutable section of the .rid file.

- RTI 1.3-NG allows you to specify the host name for the launch of the RtiExec and FedExec in
the RTI_FederationExecutive.FederationStrategy section of the .rid file. If not specified, the
RTI will use the local host.

In addition, RTI1.3-NG does not require that the .fed and .rid files be maintained in the
%RTI_CONFIG% directory. Instead, these files should be located in the federate code directory
or the path provided during the create federation invocation (see createFederationExecution in the
programmer’s reference pages).

Differences we noted while running the new FoodFight execution

When the federate was launched without an operational RtiExec it did not spin until a RtiExec was
started. Instead, the federate hung until the resolution timeout completed it’s cycle and dispatched
an exception message to the screen. The user was prompted with sufficient information to
determine that the RtiExec was not operating at initiation.

The RtiExec and FedExec provide minimum manual operations. The [shift][?] feature for help is
not available.

Exception messages are longer and more descriptive.

There was no delaying action required after the createFederationExecution invocation. The
FedExec was ready to accept joining federates immediately after return.

Rti 1.3-NG does not depend on the %RTI_SAVE_PATH% variable. Instead, the directory
expected to contain the saved state is given by the path to the directory specified by the user in the
RID file parameter FullPathOfSaveDirectory under the RTI_FederationExecutive. As shipped the
RTLrid file defines FullPathOfSaveDirectory as “.”. Unless this parameter was updated by the
user, the RTI saved the state files in the same directory that launched the “rtiexec”.

For each federate and the fedex, a successful save produced a file with the name generated using
the name of the federation, the save label, the federate type and the federate handle. In the case of
the fedex application, “fedex” was used instead of the federate type and handle. For example, the
following would have been created for the federation named, “Verification”, using a save label of
“Save2Feds”, with two federates and the fedex.

Verification_Save2Feds_agentl 1.save
Verification_Save2Feds_agent2_3.save
Verification_Save2Feds_fedex.save

HLA RTI 1.3-Next Generation

12-25

Migration Document

12.4.3. Getting help

A web based help desk system on the RTIL3NG Support Page
(http://helpdesk.dctd.saic.com/) has been established to allow users to submit problem
reports, provide enhancement requests, or get help. To submit a problem report,
enhancement request, or pose a question follow the Submit Problem link. You will then be
prompted to enter a user name and password to access the HelpDesk software. Enter the user
name and password that you were assigned when you downloaded the software. Upon
successful login, you will be presented with a problem report form. Please choose the
appropriate Case Type (Problem Report or Enhancement Request) and problem category
from the Case Category - Type — Item selection boxes and enter a short description and the
details of the problem. Shortly after you submit your problem report, you should receive
email confirming its submission and containing the case ID for the report and a link to the
problem report. You may use link in the email to go directly to the problem report view or
you can view your problem report status using the View Problems link. When the problem
has been solved or an answer posed for your question you will receive an email with a link to
the solution of your problem.

HLA RTI 1.3-Next Generation

12-26

http://helpdesk.alex.saic.com/

INDEX

Term Page #
~RTlambassador() A.7-1
A

announceSynchronizationPoint() B.1-1
associateRegionForUpdates() A.6-1
AttributeHandleSet C.11
AttributeHandleValuePairSet C.1-3
attributelsNotOwned() B.4-1
attributelsOwnedByFederate() A.4-1
attributeOwnedByRTI() B.4-2
attributeOwnershipAcquisition() A.4-2
attributeOwnershipAcquisitionIfAvailable() A.4-4
attributeOwnershipAcquisitionNotification() B.4-3
attributeOwnershipDivestitureNotification() B.4-5
attributeOwnershipReleaseResponse() A.4-5
attributeOwnershipUnavailable() B.4-7
attributesinScope() B.3-1
attributesOutOfScope() B.3-2
C

cancelAttributeOwnershipAcquisition() A.4-6
cancelNegotiatedAttributeOwnershipDivestiture() A.4-8
changeAttributeOrderType() A.5-1

HLA RTI 1.3-Next Generation

Index -1

Index to Appendix Terms

changeAttributeTransportType()
changelnteractionOrderType()
changelnteractionTransportType()

confirmAttributeOwnershipAcquisitionCancellation(

)

createFederationExecution()

createRegion()

D

deleteObject()

deleteObjectinstance()

deleteRegion()
dequeueFIFOasynchronously()
destroyFederationExecution()
disableAsynchronousDelivery()
disableAttributeRelevanceAdvisorySwitch()
disableAttributeScopeAdvisorySwitch()
disableClassRelevanceAdvisorySwitch()
disableInteractionRelevanceAdvisorySwitch()
disableTimeConstrained()
disableTimeRegulation()

discoverObiject()

discoverObjectinstance()

E

enableAsynchronousDelivery()

HLA RTI 1.3-Next Generation

Index -2

A.3-1
A.5-3
A.3-3
B.4-8

A.l-1
A.6-2

A.3-4
A.3-5
A.6-3
A.7-2
A.1-3
A.5-5
A.7-3
A.7-4
A.7-5
A.7-6
A.5-6
A.5-7
B.3-3
B.3-4

A.5-8

Index to Appendix Terms

enableAttributeRelevanceAdvisorySwitch()
enableAttributeScopeAdvisorySwitch()
enableClassRelevanceAdvisorySwitch()
enablelnteractionRelevanceAdvisorySwitch()
enableTimeConstrained()
enableTimeRegulation()

Enumerated Types

EventRetractionHandle

Exception

Exceptions

=
Factory Classes
FederateHandleSet
federateRestoreComplete()
federateRestoreNotComplete()
federateSaveAchieved()
federateSaveBegun()
federateSaveComplete()
federateSaveNotAchieved()
federateSaveNotComplete()
federationNotRestored()
federationNotSaved()
federationRestoreBegun()

federationRestored()

HLA RTI 1.3-Next Generation

Index -3

A.7-7
A.7-8
A.7-9
A.7-10
A.5-9
A.5-11
C.2-1
C.2-8
C.1-6
C.2-2

C.2-6
C.1-7
A.l-4
A.1-5
A.1-8
A.1-6
A.1-9
A.1-10
A.1-11
B.1-2
B.1-3
B.1-4
B.1-5

Index to Appendix Terms

federationSaved()
federationSynchronized()
FedTime

flushQueueRequest()

G

getAttributeHandle()
getAttributeName()
getAttributeRoutingSpaceHandle()
getDimensionHandle()
getDimensionName()
getinteractionClassHandle()
getinteractionClassName()
getinteractionRoutingSpaceHandle()
getObjectClass()
getObjectClassHandle()
getObjectClassName()
getObjectinstanceHandle()
getObjectinstanceName()
getOrderingHandle()
getOrderingName()
getParameterHandle()
getParameterName()

getRegion()

getRegionToken()

HLA RTI 1.3-Next Generation

Index -4

B.1-6

B.1-7

C.1-8
A.5-13

A.7-11
A.7-12
A.7-13
A.7-14
A.7-15
A.7-16
A.7-17
A.7-18
A.7-19
A.7-20
A.7-21
A.7-22
A.7-23
A.7-24
A.7-25
A.7-26
A.7-27
A.7-28
A.7-29

Index to Appendix Terms

getRoutingSpaceHandle()
getRoutingSpaceName()
getTransportationHandle()

getTransportationName()

I
informAttributeOwnership()
initiateFederateRestore()
initiateFederateSave()
initiatePause()
initiateRestore()
initiateResume()

isAttributeOwnedByFederate()

J

joinFederationExecution()

L

localDeleteObjectinstance()

M
modifyLookahead()

N

negotiatedAttributeOwnershipDivestiture()

HLA RTI 1.3-Next Generation

A.7-30
A.7-31
A.7-32
A.7-33

B.4-9
B.1-8
B.1-9
B.1-11
B.1-12
B.1-13
A.4-9

A.1-12

A.3-7

A.5-15

A.4-10

Index to Appendix Terms

nextEventRequest()
nextEventRequestAvailable()

notifyAboutRegionModification()

P
ParameterHandleValuePairSet
pauseAchieved()
Pound-Defined Constants
provideAttributeValueUpdate()
publishinteractionClass()

publishObjectClass()

Q
queryAttributeOwnership()

gueryFederateTime()
queryLBTS()
gueryLookahead()

gueryMinNextEventTime()

R

receivelnteraction()
reflectAttributeValues()
reflectRetraction()

Region

registerFederationSynchronizationPoint()

HLA RTI 1.3-Next Generation

A.5-16
A.5-18
A.6-4

C.1-10
A.1-14
C.2-7
B.3-5
A.2-1
A.2-2

A.4-12
A.5-20
A.5-21
A.5-22
A.5-23

B.3-6
B.3-8
B.3-10
C.1-13
A.1-15

Index to Appendix Terms

Index to Appendix Terms

registerObject() A.3-8
registerObjectinstance() A.3-9
registerObjectinstanceWithRegion() A.6-5
removeObject() B.3-11
removeObjectinstance() B.3-12
requestAttributeOwnershipAcquisition() A.4-14
requestAttributeOwnershipAssumption() B.4-10
requestAttributeOwnershipDivestiture() A.4-16
requestAttributeOwnershipRelease() B.4-12
requestClassAttributeValueUpdate() A.3-11
requestClassAttributeValueUpdateWithRegion() A.6-7
requestFederateTime() A.5-24
requestFederationRestore() A.1-17
requestFederationRestoreFailed() B.1-14
requestFederationRestoreSucceeded() B.1-15
requestFederationSave() A.1-19
requestFederationTime() A.5-25
requestiD() A.3-12
requestLBTS() A.5-26
requestLookahead() A.5-27
requestMinNextEventTime() A.5-28
requestObjectAttributeValueUpdate() A.3-13
requestPause() A.1-21
requestRestore() A.1-22
requestResume() A.1-23

HLA RTI 1.3-Next Generation

Index -7

requestRetraction()
resignFederationExecution()
restoreAchieved()
restoreNotAchieved()
resumeAchieved()

retract()

RTlambassador()

S

sendInteraction()
sendInteractionWithRegion()
setLookahead()

setTimeConstrained()
startInteractionGeneration()
startRegistrationForObjectClass()
startUpdates()
stopInteractionGeneration()
stopRegistrationForObjectClass()
stopUpdates()
subscribelnteractionClass()
subscribelnteractionClassWithRegion()
subscribeObjectClassAttribute()
subscribeObjectClassAttributes()
subscribeObjectClassAttributesWithRegion()

synchronizationPointAchieved()

HLA RTI 1.3-Next Generation

Index -8

B.5-1
A.1-24
A.1-25
A.1-26
A.1-27
A.5-29
A.7-34

A.3-14
A.6-9
A.5-30
A.5-31
B.2-1
B.2-2
B.2-3
B.2-4
B.2-5
B.2-6
A.2-4
A.6-11
A.2-6
A.2-8
A.6-13
A.1-28

Index to Appendix Terms

synchronizationPointRegistrationFailed()

synchronizationPointRegistrationSucceeded()

T
tick()

timeAdvanceGrant()
timeAdvanceRequest()
timeAdvanceRequestAvailable()
timeConstrainedEnabled()
timeRegulationEnabled()
turninteractionsOff()
turninteractionsOn()
turnRegulationOff()
turnRegulationOn()
turnRegulationOnNow()
turnUpdatesOffForObjectinstance()
turnUpdatesOnForObjectinstance()

Typedefs

U

unassociateRegionForUpdates()
unconditionalAttributeOwnershipDivestiture()
unpublishinteractionClass()
unpublishObjectClass()

unsubscribelnteractionClass()

HLA RTI 1.3-Next Generation

Index -9

B.1-16
B.1-17

A.7-35
B.5-2
A.5-32
A.5-34
B.5-3
B.5-4
B.2-7
B.2-8
A.5-36
A.5-37
A.5-38
B.3-13
B.3-14
C.2-9

A.6-15
A.4-18
A.2-10
A.2-11
A.2-13

Index to Appendix Terms

unsubscribelnteractionClassWithRegion()
unsubscribeObjectClass()
unsubscribeObjectClassAttribute()
unsubscribeObjectClassWithRegion()

updateAttributeValues()

HLA RTI 1.3-Next Generation

Index -10

A.6-16
A.2-14
A.2-15
A.6-17
A.3-16

Index to Appendix Terms

	Preface
	Introduction to HLA
	
	
	Figure 1-1. DoD M&S Master Plan
	Figure 1-2. Common Technical Framework
	Figure 1-3. High Level Architecture Mandate
	Figure 1-4. HLA Component Summary

	Federation Rules
	Interface Specification
	Object Model Template (OMT)
	
	Figure 1-5. Object Model Template
	Figure 1-6. Object Model Summary

	Conceptual Model of the Mission Space (CMMS)
	
	Figure 1-7. Conceptual Model of the Mission Space
	Figure 1-8. The CMMS Process

	Data Standardization (DS)
	
	Figure 1-9. Data Standardization Products

	Further Reading

	RTI Synopsis
	
	
	Figure 2-1. RTI Overview

	Major Components
	
	Figure 2-2. RTI Components At-a-Glance
	Figure 2-3. RTI Components

	RtiExec
	FedExec
	libRTI
	
	Figure 2-4. RTI and Federate Code Responsibilities

	Management Areas
	
	Figure 2-5. Federate – Federation Interplay
	Figure 2-6. FedExec Life Cycle
	Figure 2-7. Management Areas Partitioned

	Federation Management
	Figure 2-8. Federation Management

	Declaration Management
	Figure 2-9. Declaration Management

	Object Management
	Figure 2-10. Object Management

	Ownership Management
	Figure 2-11. Ownership Management

	Time Management
	Figure 2-12. Time Management

	Data Distribution Management
	Figure 2-13. Data Distribution Management

	The Role of Time
	Introduction
	Time Management Basics
	"Regulating" and "Constrained"
	Regulating
	Lookahead
	TSO Event
	Constrained
	Lower bound time stamp (LBTS)

	Advancing Time
	
	Figure 3-2. Six-axis Diagram – Late Arrival

	LBTS Constraint
	Figure 3-3. LBTS for Constrained Federates

	Late Arriving Federate
	Figure 3-4. Late-Arriving Federate

	"Receive-Ordered" v. "TSO" Events
	
	Figure 3-5. Per Federate Queues

	EXAMPLE 1
	EXAMPLE 2
	SUMMARY

	FOM/SOM Development
	
	
	Figure 4-1. The Federation Development and Execution Process (FEDEP) Model

	Federation Management
	Introduction
	Primary Functions
	
	Figure 5-1. Federation Management Life Cycle

	RTIambassador::createFederationExecution()
	RTIambassador::joinFederationExecution()
	RTIambassador::tick()
	RTIambassador::resignFederationExecution()
	RTIambassador::destroyFederationExecution()

	FoodFight Example
	Federate Synchronization
	Save/Restore
	
	Figure 5-3. Federation Management Save
	Figure 5-4. Federation Management Restore

	Time Management
	Introduction
	Toggling "regulating" and "constrained" Status
	
	Figure 6-1. Toggling "regulating" and "constrained" Status

	Regulation Policy
	Constrained Policy

	Time Advance Requests
	Time-Stepped Federates
	Figure 6-2. Logical Time Advancement for a Time-Step Federate

	Event-Based Federates
	Figure 6-3. Logical Time Advancement for an Event-Based Federate

	Optimistic Federates
	Figure 6-4. Logical Time Advancement for an Optimistic Federate

	FoodFight Example
	Time-Related Queries
	Polling vs. AsynchronousIO Tick() Strategies

	Declaration Management
	Introduction
	
	Figure 7-1. Control Signal Schema

	Object Vocabulary Review
	Object Hierarchies
	
	Figure 7-2. Class Hierarchy – Venn Diagram

	Publishing and Subscribing Objects
	
	Figure 7-3. Object Publishing

	Object Publication
	Interaction Publication
	Object Subscription
	Interaction Subscription
	Control Signals

	Object Publication and Subscription
	
	Figure 7-4. Object Publication and Subscription

	Throttling Publications
	FoodFight Object Declaration
	Excerpt from Student.h
	Dynamic Object Publication and Subscription

	Publishing and Subscribing Interactions
	
	Figure 7-5. Declaring Interactions

	Object Management
	Registering, Discovering, and Deleting Object Instances
	
	Figure 8-1. Object Management Methodology

	Updating and Reflecting Object Attributes
	
	Figure 8-2. Object Management Updates

	Encoding and Object Update
	Decoding and Object Reflection
	Exchanging Interactions
	
	Figure 8-3. Exchanging Interactions

	Additional Object Control
	
	Figure 8-4. Additional Object Control

	Attribute Management
	Enable/Disable Attribute Management
	Figure 8-5. Scope Interactions

	Ownership Management
	Introduction
	Push v. Pull
	Privilege to Delete

	Ownership Pull
	
	Figure 9-1. Shared Update Responsibility
	Figure 9-2. Ownership Pull Interaction Diagram – Orphaned Attribute
	Figure 9-3. Ownership Pull Interaction Diagram – Intrusive

	Attribute Ownership Acquisition
	Attribute Ownership Release

	Ownership Push
	
	Figure 9-4. Ownership Push Interaction Diagram

	Unconditional Push
	Negotiated Push
	Complex Exchanges

	Supporting Functions
	Cancellation
	Queries

	Data Distribution Management
	Introduction
	Example Routing Space
	A Previous Example Revisited
	Figure 10-1. Publication and Subscription Intersections

	A Routing Space
	Figure 10-2. Example Routing Space

	Defining Routing Spaces and Regions
	Routing Spaces
	Extents
	Figure 10-3. Normalization of a Range in an Extent

	Calculation of Extents
	Creative Dimensions
	Regions and Attributes
	Oddly Shaped Regions
	Figure 10-5. Two-Layer Filtering

	Thresholds
	Default Routing Space

	Creating Regions
	
	Figure 10-6. Region Methods

	Binding Object Attributes to Regions
	Attribute Updates and Regions
	Attribute Subscriptions and Regions
	Requesting Updates
	Figure 10-7. DDM Attributes (Part 1 of 3)
	Figure 10-8. DDM Attributes (Part 2 of 3)
	Figure 10-9. DDM Attributes (Part 3 of 3)

	Object Ownership and Regions
	Time and Regions

	Binding Interactions to Regions
	
	Figure 10-10. Interactions and DDM

	M
	Management Object Model
	Introduction to the Management Object Model
	Interactions

	Manager
	Manager.Federate
	Manager.Federate.Adjust
	Manager.Federate.Adjust.ModifyAttributeState
	Manager.Federate.Adjust.SetServiceReporting
	Manager.Federate.Adjust.SetExceptionLogging
	Manager.Federate.Adjust.SetTiming
	Manager.Federate.Report
	Manager.Federate.Report.Alert
	Manager.Federate.Report.ReportInteractionPublication
	Manager.Federate.Report.ReportInteractionsReceived
	Manager.Federate.Report.ReportInteractionsSent
	Manager.Federate.Report.ReportInteractionSubscription
	Manager.Federate.Report.ReportObjectInformation
	Manager.Federate.Report.ReportObjectPublication
	Manager.Federate.Report.ReportObjectsOwned
	Manager.Federate.Report.ReportObjectsReflected
	Manager.Federate.Report.ReportObjectSubscription
	Manager.Federate.Report.ReportObjectsUpdated
	Manager.Federate.Report.ReportReflectionsReceived
	Manager.Federate.Report.ReportServiceInvocation
	Manager.Federate.Report.ReportUpdatesSent
	Manager.Federate.Request
	Manager.Federate.Request.RequestInteractionsReceived
	Manager.Federate.Request.RequestInteractionsSent
	Manager.Federate.Request.RequestObjectInformation
	Manager.Federate.Request.RequestObjectsOwned
	Manager.Federate.Request.RequestObjectsReflected
	Manager.Federate.Request.RequestObjectsUpdated
	Manager.Federate.Request.RequestPublications
	Manager.Federate.Request.RequestReflectionsReceived
	Manager.Federate.Request.RequestSubscriptions
	Manager.Federate.Request.RequestUpdatesSent
	Manager.Federate.Service
	Manager.Federate.Service.ChangeAttributeOrderType
	Manager.Federate.Service.ChangeAttributeTransportationType
	Manager.Federate.Service.ChangeInteractionOrderType
	Manager.Federate.Service.ChangeInteractionTransportionType
	Manager.Federate.Service.DeleteObjectInstance
	Manager.Federate.Service.DisableAsynchronousDelivery
	Manager.Federate.Service.DisableTimeConstrained
	Manager.Federate.Service.DisableTimeRegulation
	Manager.Federate.Service.EnableAsynchronousDelivery
	Manager.Federate.Service.EnableTimeConstrained
	Manager.Federate.Service.EnableTimeRegulation
	Manager.Federate.Service.FederateRestoreComplete
	Manager.Federate.Service.FederateSaveBegun
	Manager.Federate.Service.FederateSaveComplete
	Manager.Federate.Service.FlushQueueRequest
	Manager.Federate.Service.LocalDeleteObjectInstance
	Manager.Federate.Service.ModifyLookahead
	Manager.Federate.Service.NextEventRequest
	Manager.Federate.Service.NextEventRequestAvailable
	Manager.Federate.Service.PublishInteractionClass
	Manager.Federate.Service.PublishObjectClass
	Manager.Federate.Service.ResignFederationExecution
	Manager.Federate.Service.SubscribeInteractionClass
	Manager.Federate.Service.SubscribeObjectClassAttributes
	Manager.Federate.Service.SynchronizationPointAchieved
	Manager.Federate.Service.TimeAdvanceRequest
	Manager.Federate.Service.TimeAdvanceRequestAvailable
	Manager.Federate.Service.UnconditionalAttributeOwnershipDivestiture
	Manager.Federate.Service.UnpublishInteractionClass
	Manager.Federate.Service.UnpublishObjectClass
	Manager.Federate.Service.UnsubscribeInteractionClass
	Manager.Federate.Service.UnsubscribeObjectClass
	Objects

	Manager
	Manager.Federate
	Manager.Federation
	M
	Migration Document
	Introduction to Migrating RTI 1.3v6 Federates to RTI 1.3-NG
	Management Object Model
	General notes
	Manager.Federate.Adjust.ModifyAttributeState
	Manager.Federate.Adjust.SetExceptionLogging
	Manager.Federate.Report.Alert
	Manager.Federate.Report.ReportObjectSubscription
	Manager.Federate.Report.ReportServiceInvocation
	Manager.Federate object

	RTI Initialization Data (Extracted from the RTI.rid file)
	Introduction to the RTI 1.3-NG RTI Initialization Date file
	File Location
	File Format
	File Parameter Scoping
	Parameter Definition

	Notes on porting FoodFight from RTI1.3v6 to RTI1.3-NG
	Migrating FoodFight for the Hands-On Practicum to RTI 1.3-NG
	Differences we noted while running the new FoodFight execution
	Getting help

